
0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 1

How Social and Communication Channels
Shape and Challenge a Participatory Culture

in Software Development
Margaret-Anne Storey, Leif Singer, Fernando Figueira Filho, Alexey Zagalsky, and Daniel M. German

Abstract—Software developers use many different communication tools and channels in their work. The diversity of these tools has
dramatically increased over the past decade, giving rise to a wide range of socially enabled communication channels and social media
that developers use to support their activities. The availability of such social tools is leading to a participatory culture of software
development, where developers want to engage with, learn from, and co-create software with other developers. However, the interplay
of these social channels, as well as the opportunities and challenges they may create when used together within this participatory
development culture, are not yet well understood. In this paper, we report on a large-scale survey conducted with 1,449 GitHub users.
We describe which channels these developers find essential to their work and gain an understanding of the challenges they face using
them. Our findings lay the empirical foundation for providing recommendations to developers and tool designers on how to use and
improve tools for developers.

Index Terms—Participatory Culture, Communication, Social Media, CSCW, Software Engineering.

F

1 INTRODUCTION

Software development has transitioned from a predomi-
nantly solo activity of developing standalone programs, to a
highly distributed and collaborative approach that depends
on or contributes to large and complex software ecosystems.
Many developers now contribute to multiple projects, and
as a result, project boundaries blur, not just in terms of their
architecture and how they are used, but also in terms of
how they are authored. Developers want to engage with,
learn from and co-create with other developers, forming a
participatory culture [1] within many development-related
communities of practice [2]. Many developers not only
care about the code they need to write, but also about
the skills they acquire [3], the contributions they make,
and the connections they establish with other developers.
These activities, in turn, lead to more collaborative software
development opportunities.

To support developers’ collaboration and communica-
tion needs, modern development tools are often integrated
with or supplemented by communication channels and
social media [4] (e.g., email, chat, or microblogging ser-
vices). The rich and varied ecosystems of tools that de-
velopers use help them discover important technological
trends, co-create with other developers, and learn new skills.
Furthermore, these social tools foster creativity, promote
engagement, and encourage participation in development
projects. We see that the collaborative and participatory
nature of software development continues to evolve, shape,
and be shaped by communication channels that are used

• M-A. Storey, L. Singer, A. Zagalsky, and D.M. German are with the
University of Victoria, Victoria, BC, Canada.
E-mail: {mstorey, lsinger, alexeyza, dmg}@uvic.ca

• F. Figueira Filho is with Universidade Federal do Rio Grande do Norte,
Natal, Brazil.
E-mail: fernando@dimap.ufrn.br

by development-related communities of practice [5]. We use
the general term communication channel to refer to traditional
communication channels (e.g., telephone, in-person interac-
tions) as well as social features that may be standalone or
integrated with other development tools (e.g., email, chat,
and forums).

Within a community of practice, software is the combina-
tion of externalized knowledge (e.g., code, documentation,
history of activities) as well as the tacit knowledge that
resides in community members’ heads (e.g., experience of
when to use an API, or design constraints that are not
written down). Communication channels and development
tools support developers in forming and sharing both ex-
ternalized and tacit knowledge in a highly collaborative
manner. However, not much is known about the impact this
participatory culture may have on software development
practices, velocity, and software quality.

In this paper, we investigate how the choice of com-
munication channels shapes developers’ activities within a
participatory culture of development, as well as explore the
challenges they may face. We report on a large-scale sur-
vey with developers that contribute to either collaborative
or community-based development projects on the popular
GitHub code hosting site. We wanted to uncover the demo-
graphics of the developers participating in this community,
and we aimed to understand which channels and tools
these developers use to support learning, discovery, and
collaboration with others. Our survey revealed which com-
munication channels these developers find essential to their
work, and we gained an understanding of the challenges
they face. These insights led to several recommendations on
how to use and improve communication and social tools for
developers.

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 2

Our work investigates the following research questions:

RQ1 Who is the social programmer that participates in these
communities?

RQ2 Which communication channels do these developers
use to support development activities?

RQ3 Which communication channels are the most impor-
tant to developers and why?

RQ4 What challenges do developers face using an ecosys-
tem of communication channels to support their
activities?

Previously [6] we briefly described the first iteration of
our survey (conducted in 2013) with some initial high-level
results. This paper describes our survey in detail and pro-
vides in-depth analyses of the results from two deployments
of the survey, conducted at the end of 2013 and again at the
end of 2014. This work has formed an initial descriptive
theory of the role communication channels play in support-
ing software development activities within a participatory
development ecosystem.

2 BACKGROUND

We begin with an overview of communities of practice and
communication channels in software development, illustrat-
ing the interplay between them. The ongoing formation and
evolution of these channels brings numerous challenges,
both to the individual software developer and to the com-
munity as a whole.

2.1 Communities of Practice in Software Development
Communities of practice are groups of people connected by
the similarity of their activities [2]. Such communities can be
found in many domains, including software development.
Community members do not have to be spatially or so-
cially connected, but they solve similar problems and learn
from each another through processes like apprenticeship
or mentoring. Members advance through a process called
legitimate peripheral participation: novices watch passively
and then take on peripheral activities that are not vital, but
nevertheless provide value to the community.

For example, in open source development, a potential
contributor might start by only reading discussions and
reporting defects. Over time, these contributors learn com-
munity conventions and move closer to the core group of
experts. Developers may start fixing bugs and progress to
the point where they can add their own features. They may
gain commit rights, and at some point become involved in
strategic project decisions. This phenomenon has also been
observed by Crowston et al. [7] and Pham et al. [8].

We see that developers consider themselves to be part
of a broader community of like-minded individuals that
learn from and teach one another. In open source projects,
professionals and hobbyists contribute to the same projects
and interact in the same communities—some companies
that rely on open source projects may have their own staff
contribute to them.

Since software development lends itself to distributed
or remote work—collaborators need not be in the same
office, city, or time zone [9]—developer communities arise
on a global scale and are mostly connected through tools

that incorporate social aspects, helping developers connect
with and learn from each other. In a sense, socially enabled
tools and media can be considered catalysts to the formation
of global, virtual software development communities of
practice.

2.2 The Importance of Media in Software Development

When we think of software development tools, our first
thoughts often concern development environments, debug-
gers, source code forges, version control systems, and bug
trackers. But as Naur [10] emphasizes, software is much
more than the code being developed. Software also involves
the immediate knowledge in developers’ minds and the
documentation accompanying the code. Thus, other tools
that play an essential role in collaborative development
include project management tools and communication chan-
nels such as mailing lists [11], micro-blogging services [12]
and chat [13], [14]. These tools support knowledge manage-
ment activities that are central to the success and longevity
of a large software project.

Naur further argues that programmer knowledge tran-
scends documentation in three primary ways: it helps relate
the software back to the real world, it helps explain why
each part of the software is what it is, and lastly, it allows for
modification of the software while maintaining a mapping
to real-world aspects. Furthermore, Naur notes that cer-
tain software development activities (e.g., maintenance and
continued support) are dependent on knowledge which is
distributed among the members of the development group.
Thus, in this paper, we look at software development as
an activity that creates two types of knowledge—tacit and
externalized—and we explore how developers use media to
communicate and share this information.

Likewise, Scacchi’s open source studies refer to the
importance of “software informalisms”, which he says are
“information resources and artifacts that participants use
to describe, proscribe, or prescribe what’s happening in a
OSSD project.” [15] Such informal narratives are captured
and related in a myriad of online Web-based communica-
tion artifacts and documentation resources (such as emails,
blogs, wikis, IRC). Together, these resources comprise a
distributed knowledge base that continually evolves as par-
ticipants gain knowledge about the systems they develop
and use.

Media—i.e., development tools and communication
channels—play a critical role in how externalized and tacit
knowledge is formed, shared, manipulated, and captured.
These tools and channels become an extension of the pro-
grammer [16], helping them extend and distribute their
cognition to develop, refine, and share knowledge. We pre-
viously [6] reported on an in-depth survey of how tools and
channels play an essential role in communicating knowl-
edge that is:

• captured in developers’ heads;
• externalized in tools;
• stored in community knowledge resources; or
• captured in developer networks.

Figure 1 provides a historical perspective of how dif-
ferent tools support the communication of these types of

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 3

knowledge during software development. This simplified
view—developed in our previous research—reveals how
development tools and media have evolved from a non-
digital form to a digital form, eventually becoming infused
with social features. We see a recent trend towards the use of
social media channels and the embedding of social features
in development tools. Other researchers have also noted an
increase in the number of tools (in particular, social tools)
adopted by software developers [17], [18], [19].

In Fig. 1, we distinguish tools that support the com-
munication and capture of knowledge in developers’ heads
from knowledge that is externalized through development
artifacts and tools, and from knowledge that is embedded
within community resources or social networks. The inclu-
sion of more social aspects over time has led to an increase of
knowledge that is stored in community resources and social
networks. We have previously [6] provided an overview of
the research that has been conducted on social channels
during software development. Giuffrida and Dittrich [20]
elaborate on this topic further by providing a systematic
mapping study on research that has studied the use of social
software in global software development.

2.3 The Rise of the Social Programmer
Developers are becoming increasingly social and rely on
their social networks to keep up to date, to find projects
to contribute to, and to find others to collaborate with. They
rely on tools to help them participate effectively in these
social networks, although sometimes they also face hurdles
in participating and in staying up to date. The rise of the
social programmer [6], [21] and the ways that communities
of developers make use of increasingly social tools have
led to the emergence of a highly participatory culture of
software development. Jenkins [1] defines a participatory
culture as one that:

• lowers barriers to participation;
• provides strong support for sharing;
• facilitates informal mentorship;
• has its members believe their contributions matter;

and
• values social connections and what others think.

While this framework helps us better understand how
developers work in this new context, we do not have
a good understanding of how particular combinations of
channels and tools shape and are shaped by communities
of developers. We also do not adequately understand which
channels support which knowledge activities, and whether
individual developers face challenges using such a complex
ecosystem of tools while contributing to potentially many
different communities and projects. Achieving a deeper un-
derstanding of how media shape this participatory culture
will guide tool designers and provide recommendations for
how individual developers, teams, and communities should
use the media effectively. In the next section, we describe a
large-scale survey we designed to investigate this topic.

3 METHODOLOGY: THE DEVELOPER SURVEY

Our overarching research goal is to understand how com-
munication channels and social media support a broad set of

knowledge activities within a participatory culture of soft-
ware development. To help realize this goal, we designed
and conducted a survey to learn how developers use tools
to support their knowledge activities, which media channels
are important to them, and what challenges they may face.

We deployed the same survey during two different time
periods: at the end of 2013 and at the end of 2014. For both
deployments, we downloaded account data for the most
recently active GitHub users with public email addresses.
To indicate activity, we used the 25 event types defined by
the GitHub API v31. Most of these events concern develop-
ment tasks such as committing code, creating repositories,
and creating issues, but there are also more general events
related to following users or watching repositories. To find
developers for our survey, we used the GitHub Archive2 to
query public events happening on GitHub. Therefore, our
findings are limited to this population. We sorted events
by their timestamp and excluded users who did not have
public email addresses at the time we sent our invitation
emails. For the second iteration, we also ignored users
we had emailed in the first iteration. We focused on this
population of developers because GitHub is currently the
most widely used social coding platform by developers
who contribute to one or more collaborative development
projects in an open manner3.

We emailed our survey to 7,000 active GitHub users
during November and December of 2013, and to 2,000 active
GitHub users in December of 2014. 1,492/332 developers
responded to the two instances of the survey in 2013 and
2014, respectively (21% and 16% response rates). The only
statistical difference between the two deployments was an
increase in the number of women (from 3.5% to 6.3%,
ρ = 0.042). We combined the responses from both surveys
and ignored incomplete ones, resulting in 1,449 survey
responses.

Our survey followed several iterations of design and
was based on an in-depth review of the existing literature
on software engineering as well as related literature on
knowledge work. In the survey4, we first inquired about
the developers’ demographics. We then inquired about
communication channel use for a set of 11 development
activities. The activities we inquired about were informed
by our review of the literature that examines tool and com-
munication channel use by software developers [6]. These
activities, which go beyond finer grained development and
project management activities, were as follows:

• STAY UP TO DATE about technologies, practices,
and tools for software development

• FIND ANSWERS to technical questions
• LEARN and improve skills
• DISCOVER interesting developers
• CONNECT with interesting developers
• GET and GIVE FEEDBACK
• PUBLISH development activities
• WATCH other developers’ activities

1. https://developer.github.com/v3/activity/events/types/
2. https://www.githubarchive.org
3. https://octoverse.github.com/
4. http://thechiselgroup.org/2013/11/19/

how-do-you-develop-software/

https://developer.github.com/v3/activity/events/types/
https://www.githubarchive.org
https://octoverse.github.com/
http://thechiselgroup.org/2013/11/19/how-do-you-develop-software/
http://thechiselgroup.org/2013/11/19/how-do-you-develop-software/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 4

Fig. 1. Development communication channels over time and how they support the transfer of different kinds of developer knowledge.

• DISPLAY my SKILLS/ACCOMPLISHMENTS
• ASSESS other developers
• COORDINATE with other developers when partici-

pating on projects

The survey questions relating to activities all followed
the same form: we used a matrix of options that the survey
respondents could select from to indicate that an item was
used for the corresponding activity (see Fig. 2 for an ex-
ample question about activity and channel use). The social
channels specified in the matrix were determined from our
own knowledge as developers, as well as through feedback
from fellow developers. The channels were refined using
the research literature and through piloted surveys. We
included an “Other” option to elicit channels we did not
consider. We asked developers to rank the most important
tools and channels they used to support development
activities and explain why those tools were important.

We further aimed to understand the challenges devel-
opers may face using social channels, probing about pri-
vacy, interruptions, and feeling overwhelmed, as these were
concerns that came up in earlier studies conducted with
adopters and non-adopters of social media (e.g. Singer et
al. [12]).

The survey instrument is one of the contributions of this
paper and its source code can be found in a repository on
GitHub5. This will allow others to replicate our survey and

5. https://github.com/thechiselgroup/devsurvey

build upon our work. We describe our analysis approach
as we present each research question, and refer to the
limitations of the study in the discussion section of the
paper.

In the following sections, we present the results from our
analysis of the survey responses to answer our four research
questions.

4 SOCIAL PROGRAMMER DEMOGRAPHICS

For our first research question (RQ1), we wished to charac-
terize the modern social programmer that openly participates
on projects hosted on the GitHub social coding platform.

Canada and USA

Latin America

Africa

Europe

Asia

Oceania

0 100 200 300 400 500 600

Fig. 3. Demographics of the programmers that answered the survey
(those recently active on GitHub with public activity).

https://github.com/thechiselgroup/devsurvey

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 5

Fig. 2. The channel matrix designed for the survey.

0

200

400

600

800

1000

1200

1400

fe
m

al
e

m
al

e
ot

he
r

Gender

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

100

200

300

400

500

600

700

800

<
=

22

23
−

32

33
−

45

46
−

60

>
=

61

Age

0%

10%

20%

30%

40%

50%

0

50

100

150

200

250

300

350

so
lo

2−
3

4−
5

6−
7

8−
10

11
−

50

51
−

10
0

>
10

0

Team Size

0%

10%

20%

0

100

200

300

400

500

<
=

1

2−
5

5−
10

10
−

20

>
20

Prog. Exp.

0%

10%

20%

30%

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

>
5

Num. Projects

0%

10%

20%

0

200

400

600

800

1000

1200

N
oP

ro
f

P
ro

f

N
oO

S
S

O
S

S

N
oP

et

P
et

Tenure

0%

10%

20%

30%

40%

50%

60%

70%

80%

Fig. 4. Demographics of the programmers that answered the survey (those recently active on GitHub with public activity).

javascript
python

javaphp

c+
+

c

ruby

c#

ht
m

l

css

bash
objective−c

sql

perl

coffeescript

go

scala
shell

node.js

ha
sk

el
l

rcl
oj

ur
e

html5

lua

matlab

jquery

sass

objective c

erlang

ruby on rails

xml
css3

actionscript

golang

mysql

.net

assembly

groovy

fortran

less

lisp

scheme

vb.net

latex

f#

ocaml

swift
clojurescript

haml

pascal

powershell

puppet

zsh

as3

common lisp

elisp

emacs lisp

julia

pl

rust

visual basic
awk

cfml

coldfusion

dart

jade

mathematica

qt

racket

st
yl

us

t−sql

verilog

vhdl

Fig. 5. Word cloud of the programming languages used by the program-
mers that answered the survey.

We asked our survey respondents to provide demo-
graphic information such as gender, age, their geographical
location, programming experience, the programming lan-
guages they use, the number of projects they participate in,
whether they program professionally, and the size of project
teams they worked with. The answers to these preliminary
survey questions are summarized in Figures 3, 4, and 5.

TABLE 1
Most mentioned languages

Language Frequency Percentage
JavaScript 912 61.9
Python 657 44.6
Java 611 41.5
PHP 411 27.9
C++ 383 26.0
C 351 23.8
Ruby 341 23.1
C# 213 14.5
HTML 194 13.1

Geographic location: Our survey was successful in at-
tracting respondents from all over the world: 43.4% from
North America, 24.2% from Asia, 21.1% from Europe, 7.1%
from South or Central America, and 4.1% from Africa or
Oceania. It is notable that there were more respondents from
Asia than Europe; 143 respondents originated in China,
making it the second most frequent country of origin, after
the United States with 547 respondents. Canada was third
with 90 respondents.

Gender: The overwhelming majority of our respondents
identified as male—only 3.9% said they were female. How-
ever, it is possible that other respondents were female but
did not wish to be identified as such6.

Age: 56.7% of respondents said they were between 23
and 32 years of age (so-called millennials), representing the
largest age group in our survey and showing a strong bias
towards relatively young developers. In fact, 77.9% said

6. http://meta.stackoverflow.com/a/281304

http://meta.stackoverflow.com/a/281304

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 6

they were 32 or younger; 3.7% were older than 45, and only
0.4% were older than 60.

Team size: Team size was slightly more evenly dis-
tributed. Only 1.8% of respondents said they had worked
in teams of more than 50 members. We found a slight bias
towards smaller teams, with 61.5% having worked on teams
of 5 members or less, and 16.2% saying they had only
worked on projects where they were the sole member.

Programming experience: In terms of experience, re-
sponses varied. Only 5.1% had 1 year of experience or less.
33.5% had worked as a developer for 2 to 5 years, 29.1% for
5 to 10 years, 24.4% for 10 to 20 years, and only 7.6% for
more than 20 years.

Number of projects: The majority of our survey respon-
dents (88.9%) had worked on 5 projects or less, and most
had experience working on 2 (21.5%), 3 (27.7%), or 4 (15.7%)
projects.

Professionalism: Most respondents were professional
software developers (78%). 54% considered themselves
open source developers, and 51% worked on pet projects.

Programming languages: Figure 5 shows a word cloud
of programming languages used by the participants, while
Table 1 shows the top 10 most popular languages. The
three most popular languages included JavaScript (61.9%),
Python (44.6%), and Java (41.5%). This may indicate that at
least 60% of our respondents develop for the Web.

Table 2 shows the results of testing independence be-
tween the different factors surveyed. Our respondents pro-
vided three types of answers: categorical (including dichoto-
mous), such as whether the respondent was a professional
programmer; ordinal, such as how concerned they were
about their privacy; and numeric, such as the number of
different channels used. This forced us to use different
tests of independence for each pair of factors: for pairs
of categorical factors, we used chi-square; for pairs of one
categorical and one ordinal or numeric, we used Kruskall-
Wallis; and for pairs of two ordinal or numeric, we used
Spearman correlations. We highlight some of the differences
below.

Regarding age, we found a moderate positive correlation
between age and programming experience (ρ = 0.56, p �
0.001); also, older programmers are more likely to work on
professional projects (H=160.63, df=1, p � 0.001) and less
likely to work on open source projects (H=34.87, df=1, p �
0.001). However, there is almost no correlation between age
and team size (ρ = 0.09, p = 0.001).

Regarding gender, we found that female programmers
are less likely to have professional experience (H=21.55,
df=4, p � 0.001) and pet projects (H=10.6, df=2, φ = 0.08,
p = 0.05), and they work on fewer projects (H=14.79, df=6,
p = 0.022) than their male counterparts.

People working in larger teams are more likely to be pro-
fessional programmers (H=65.05, df=1, p� 0.001). There is
very little (if any) positive correlation with both the number
of projects they are members of (ρ = 0.18, p � 0.001) and
the different channels they use (ρ = 0.18, p� 0.001).

When a person is a professional programmer, it is less
likely they will work on open source projects (H=102.6,
df=1, φ = 0.27). However, a person that has a pet project
is more likely to also be involved in open source projects
(H=177.4, df=1, φ = 0.35).

Regarding the different number of channels a person
uses, there is very little (if any) positive correlation with
team size (ρ = 0.18, p � 0.001) and the number of projects
they belong to (ρ = 0.18, p� 0.001).

5 COMMUNICATION CHANNELS DEVELOPERS
USE TO SUPPORT DEVELOPMENT ACTIVITIES

To answer our second question (RQ2), we asked the re-
spondents to indicate which channels they use for a variety
of software development activities. As mentioned, these
activities were determined through a literature review and
from our previous research.

On average, developers indicated they use 11.7 channels
across all activities, with a median of 12 and quartiles of
[9, 14] (see Fig. 6 for the distribution of channels used by
survey respondents).

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Channels Used

0%

2%

4%

6%

8%

10%

12%

Fig. 6. Histogram of number of channels selected by each developer.

Table 4 shows an overview of the channels developers
said they use to support different activities. In this table,
we grouped the channels according to analog, digital, and
social+digital (see our discussion for Fig. 1). This table high-
lights that there appears to be more reliance on communica-
tion channels that support social features. For each activity,
we generated a radar graph showing the distribution of
responses about channel use (see companion website7).

For each activity, we also asked developers to indicate
other channels they might use that we did not list in the
survey (see Table 3). There are a number of channels that
we did not specify or did not specify clearly enough in our
survey, including events and meetups, software documenta-
tion, and personal blogs and Websites. The respondents also
mentioned research papers, headhunters, recruiting Web-
sites, and conference calls as important ways of supporting
their activities.

Although Table 4 paints a high-level picture of which
channels tend to support a set of development activities,
a limitation with this data is that we only know that de-
velopers use the selected channels for supporting a given
activity—we don’t know how important these channels are.
Consequently, we asked the respondents to tell us which
three channels are the most important across all activities
and why. We report these results in the next section.

7. http://thechiselgroup.github.io/channel-study/

http://thechiselgroup.github.io/channel-study/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 7

TABLE 2
Test of independence between the different demographic factors in the survey, the number of channels they use, and their responses regarding
privacy, feeling overwhelmed, and being distracted. Each value is preceded by the name of the test used followed by its results: kw represents
Kruskall-Wallis (degrees of freedom, χ2 value), cs represents Chi-square (degrees of freedom, χ2 value and Cramer’s φ), and sp represents

Spearman correlation (r value). Values in bold represent where there the two factors appear not to be independent with p < 0.05, specifically ***
corresponds to p < 0.001, ** for p < 0.01, * for p < 0.05

Age Gender TeamSize Prog. Exp. Tenure Prof Tenure Pet Tenure
OSS

Number
Projects

Gender kw: 2,2.58
Team size sp: 0.09*** kw: 7,3.61
Prog. Exp. sp: 0.56*** kw:

4,21.55***
sp: 0.11***

Tenure Prof. kw:
1,160.63***

cs:
2,3.8,0.05

kw:
1,65.05***

kw:
1,128.13***

Tenure Pet kw: 1,0.49 cs:
2,10.6,0.08**

kw: 1,4.24* kw:
1,55.39***

cs: 1,0.4,0.02

Tenure OSS kw:
1,34.87***

cs:
2,4.7,0.06

kw:
1,8.35**

kw: 1,4.55* cs:
1,102.6,0.27***

cs:
1,177.4,0.35***

Number
Projects

sp: 0.05* kw:
6,14.79*

sp: 0.18*** sp: 0.19*** kw:
6,84.80***

kw:
6,58.26***

kw:
6,18.39**

Channels
Used

sp: 0.03 kw:
19,27.17

sp: 0.18*** sp: 0.05 kw:
19,63.91***

kw:
19,32.58*

kw:
19,26.27

sp:
0.18***

Fa
ce

-t
o-

fa
ce

Bo
ok

s

W
eb

Se
ar

ch

C
on

te
nt

R
ec

om
m

en
de

rs

R
ic

h
C

on
te

nt

Pr
iv

at
e

D
is

cu
ss

io
ns

D
is

cu
ss

io
n

G
ro

up
s

Pu
bl

ic
C

ha
t

Pr
iv

at
e

C
ha

t

Fe
ed

s
an

d
Bl

og
s

N
ew

s
A

gg
re

ga
to

rs

So
ci

al
Bo

ok
m

ar
ki

ng

Q
&

A
Si

te
s

Pr
of

.N
et

w
or

ki
ng

Si
te

s

D
ev

el
op

er
Pr

ofi
le

Si
te

s

So
ci

al
N

et
w

or
k

Si
te

s

M
ic

ro
bl

og
s

C
od

e
H

os
ti

ng
Si

te
s

Pr
oj

ec
tC

oo
rd

in
at

io
n

To
ol

s

analog digital digital and socially enabled

Stay Up to Date
Find Answers

Learn
Discover Others

Connect With Others
Get and Give Feedback

Publish Activities
Watch Activities

Display Skills/Accomplishments
Assess Others

Coordinate With Others

Legend: 0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
(percentage of survey respondents mentioning a channel being used for an activity)

TABLE 4
Channels used by our respondents and the activities they support.

6 SOFTWARE DEVELOPERS’ MOST IMPORTANT
COMMUNICATION CHANNELS

Beyond mapping the channels developers use as part of
their software development activities, it is also important to
understand why these channels are important to them. For
this purpose, as well as to answer RQ3, we asked developers
to indicate the top three channels that are important to them
and why each one is important. Figure 7 shows the number
of responses given per channel.

In the following, we provide more insights into why
certain channels were perceived as important to the de-
veloper respondents. We also provide quotes from specific
participants, indicated by P#.

Code hosting sites allow for better team collaboration,

group awareness, and project coordination. The ability to
share one’s code on the Web has lowered the barriers to
entry by making source code easily accessible: “All levels of
users and employees know how to use it: The hard-core developers
use the command-line-based tools, and the ‘end users’ just use the
Web interface, without feeling overwhelmed.” [P64]

Face-to-face interactions were also deemed very im-
portant by our survey respondents. Developers can receive
rapid feedback from their co-workers, which facilitates talk-
ing though complex problems, discussing ideas, and making
design decisions: “Nothing beats being able to sit one-on-one
and talk through a topic, plan out a design or just converse while
coding. This is also my favorite way to learn from an instructor
because of the ability to ask as many questions as possible and

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 8

Activity Channels

Keeping up to date events and meetups (18), soft-
ware documentation (3), research
papers (3), formal education (2),
MOOCs (2)

Finding answers software documentation (11), re-
search papers (3)

Learning educational sites and MOOCs (20),
events and meetups (19), soft-
ware documentation (13), tutori-
als (7), research papers (6), code
reviews (4)

Discovering developers headhunters (16), recruiting
sites (12)

Connecting with developers events and meetups (35), program-
ming competitions (2), formal edu-
cation (2)

Getting and giving feedback events and meetups (9), code re-
views (4), issue trackers (4)

Publishing activities personal blogs and Websites (32),
conferences (7)

Watching activities events and meetups (4), personal
blogs and Websites (3)

Displaying skills personal blogs and Websites (64),
resumes (6), events and meetups (5)

Assessing others personal blogs and Websites (2),
source code(2)

Coordinating with others conference calls (10), cloud-based
services (e.g., Dropbox, Google
Drive) (8)

TABLE 3
Other channels reported in the survey. The values indicate the number

of times the channel was mentioned by respondents for the
corresponding activity.

have an open conversation.” [P319] Some respondents reported
using videoconferencing as a way to mimic co-located inter-
actions with other developers.

Q&A sites offer a quick way to debug issues while pro-
viding access to high-quality answers: “Almost any question
that I have, I can get an answer through these sites.” [P635]
Other respondents mentioned additional uses of Q&A sites,
including learning from code examples and getting feed-
back from experts.

Search is an essential tool for finding information: “Good
for finding the initial direction; also [...] to learn something new.”
[P484] It also provides quick access to software documen-
tation and supports problem solving. Many respondents
reported using search engines as the entry point for finding
answers on Q&A sites.

Microblogs provide just-in-time awareness of the latest
advancements and updates in the development community:
“Allows me to get up-to-date information on topics I’m interested
in—conferences, new releases, new articles/books, etc.” [P95]
They were also considered important for getting feedback
from other developers and for nurturing relationships with

social_bookmarking

recommenders

professional_networking

dev_profile_sites

other

rich_content

sns

books

project_coord

aggregators

discussion_groups

public_chat

private_discussions

feedsblogs

private_chat

microblogs

search

qa_sites

f2f

code_hosting

0 100 200 300 400 500 600 700 800 900 1000 1100

Most important

Second Most Important

Third Most Important

Most important

Second Most Important

Third Most Important

0% 10% 20% 30% 40% 50% 60% 70%

Fig. 7. Number of responses per channel indicating the importance of
each channel.

like-minded people.
Private chats (e.g., IM, Skype chat, Google chat) are

essential tools for supporting team communication and
collaboration through a single channel: “It provides a single
channel to digest and discuss everything that is going on with
the team.” [P415] Many survey respondents felt that private
chats are the closest replacement for face-to-face interactions
when quick feedback is needed and team members are
geographically distributed.

Feeds and blogs provide the most up-to-date infor-
mation on development practices and technologies: “By
following several feeds, one can find out how veterans use a
tool/technology/language... And it’s easier to know the trends”.
[P1016] Blogs encapsulate a more personalized view on a
given topic and are an important channel for documenting
techniques while sharing specific coding tips and tweaks
that can be used by other developers.

Private discussions (e.g., email) support communication
across virtually every platform and among different stake-
holders (e.g., customers and users). They are a convenient
channel for disseminating information to large groups (e.g.,
mailing lists) while keeping conversations private and per-
sistent for later retrieval: “This is how you get to communicate
privately and can have proof for a later stage.” [P1041]

Public chats (e.g., IRC) have the advantage of enabling
communication among developers and users of a particular
software project. By being public, anyone with an interest
can join in and have a conversation with project maintainers:
“Gives me direct access to the people who write my tools, and
gives me direct access to people who are using things I’ve writ-
ten” [P191]. Public chats also enable discussions and faster
feedback among team members, even if they are distributed
around the world: “As a team spreads across the world, we use
IRC to preview most of our concepts before any code is written.”
[P731]

Discussion groups (e.g., mailing lists, Google groups,
forums) support mass communication and coordination
among people scattered across large and geographically
distributed groups: “We are a physics collaboration of 3000

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 9

people, spread all over the world. Internal discussion groups
are essential for coordination on all subjects, including software
development.” [P365] Respondents also reported the useful-
ness of discussion groups for gathering customer feedback:
“Because it’s where I find my customers’ opinions and ideas.”
[P130]

Aggregators (e.g., Reddit) are socially curated channels
focused on new trends. They provide access to crowd-
sourced content that has been filtered and collated by
others, allowing for developers to stay up to date with
the latest technologies without active participation. As one
respondent put it, aggregators are “[...] roughly the heartbeat
of the current software dev industry. If a technology is worth
talking about, it will be talked about.” [P1419] The value of
aggregators is closely associated with the value of their sup-
porting communities, and survey respondents appreciated
that aggregators allow them to interact with like-minded
developers and get their feedback: “[Hacker News] is the most
welcoming community I have ever seen. [...] You can interact with
anyone (if they have public email) and the content quality is top
notch.” [P1126]

Project coordination tools increase group awareness of
current tasks and issues, and provide a means for tracking
progress and discussing next steps: “Permits tracking in-
progress work as well as receiving feedback. Essential for dis-
tributed teams.” [P105] These tools improve the transparency
of a project’s activities, increasing progress visibility not
only among team members, but also among clients: “Helps
us coordinate large tasks bases, especially when reporting back to
clients.” [P486]

Books were indicated by some of our survey respon-
dents as a cohesive and progressive way for learning about a
topic: “[They make] learning much easier than the hunt and peck
method of digging through sites on the net.” [P1189] Another
subtle but crucial advantage of books was mentioned by
one respondent: “[They are] distraction free and generally better
thought through and considered.” [P1319] Developers can gain
in-depth and focused understanding about specific topics,
while avoiding being distracted by the noise of concurrent
information.

Social network sites increase awareness of the com-
munity and help developers disseminate information from
other channels in various ways: “Because most often they func-
tion as the entry point to more relevant information published on
blogs, newspapers, books, etc.” [P224] In addition, developers
can reach potential users more easily, which is essential for
gathering feedback: “We have a group for Android Development
Testers in Google Plus where we can post things we want tested
and receive almost immediate feedback.” [P1240]

Rich content such as screencasts and podcasts provide
learning materials and communicate the state of the art in
technologies, tools, and practices for software development.
Developers are able to consume content while commuting
or performing other tasks. One survey respondent high-
lighted yet another interesting aspect of learning using rich
content: “I’m a visual and audible learner. Seeing and hearing
others makes learning better.” [P1354]

Count

Overwhelmed

Privacy

Distracted

1000 500 0 500

Strongly Agree

Strongly disagree

Fig. 8. Frequency of responses to Likert questions probing on developer
challenges with DISTRACTION, PRIVACY, FEELING OVERWHELMED.

7 THE CHALLENGES DEVELOPERS FACE USING
COMMUNICATION CHANNELS

Our fourth research question (RQ4) inquires about the
challenges developers face using communication channels.
Our previous work [3], [6], [12] revealed that developers
face challenges related to distractions, privacy, and feeling
overwhelmed by communication chatter when using social
media channels. Consequently, our survey specifically asked
whether the respondents experienced these concerns. We
show the results from these Likert-style questions in Fig. 8.
We note that privacy is not a big concern for everyone,
whereas being interrupted and feeling overwhelmed by
communication traffic are issues for more developers.

To investigate if there were any relationships between
these three factors (Privacy, Distraction, Overwhelmed) and
their demographics, we performed a more in-depth analysis
of the responses. Table 5 shows the test of independence
between whether a person feels their privacy is affected or
not and if they feel overwhelmed or distracted by their
use of communication channels, as well as the different
demographic factors of our respondents. We anticipated that
age might influence responses in terms of privacy concerns,
but no factor shows a statistically significant relationship
with the Privacy factor. A similar result was found regarding
the Distraction factor, where the only statistically significant
result was that there is very little correlation (if any) with
programming experience: ρ = 0.07, p = 0.008. The Over-
whelmed factor was found to have a very low correlation (if
any) to: age (ρ = 0.07, p = 0.014), programming experience
(ρ = −0.07, p = 0.012), and number of projects (ρ = −0.07,
p = 0.004). It was also found that people who work on open
source projects feel slightly more overwhelmed than people
who do not (H=19.89, df=6, p = 0.005). We believe these
results show a lack of evidence that the developers who
worry about privacy, feel overwhelmed, or feel distracted
belong to any specific type of group (as reported in the
survey). Nonetheless, it is notable that there is a modest pos-
itive correlation between the three factors (with p� 0.001):
people who worry about their privacy feel overwhelmed
(ρ = 0.21) and distracted (ρ = 0.19), and those who feel
distracted also feel overwhelmed (ρ = 0.24).

We also asked the respondents to share any additional
challenges they face through an open-ended text question.
432 respondents (356 to the 2013 survey, 76 to the 2014
deployment) either elaborated on the challenges mentioned
above or informed us about other challenges they experi-
ence. A wide variety of challenges were reported and we
coded, sorted, grouped, and then categorized them using
an open coding and iterative clustering technique. Postman,
who extensively studied the use of media in communi-
ties of practice, refers to a media ecology and suggests
we undertake the study of “the entire environments, their

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 10

TABLE 5
Test of independence between the different demographic factors and whether respondents feel worried about privacy, feel overwhelmed, or are
distracted by their use of communication channels. Each value is preceded by the name of the test used followed by its results: kw represents
Kruskall-Wallis (degrees of freedom, χ2 value), cs represents Chi-square (degrees of freedom, χ2 value and Cramer’s φ), and sp represents

Spearman correlation (r value). Values in bold represent when the two factors appear not to be independent with p < 0.05, specifically ***
corresponds to p < 0.001, ** for p < 0.01, * for p < 0.05

Age Gender Team
Size

Prog.
Exp.

Tenure Prof Tenure Pet Tenure
OSS

Number
Projects

Channels
Used

Privacy Over-
whelmed

Privacy sp: -0.04 kw:
6,8.26

sp: 0.01 sp: -0.04 kw: 6,10.69 kw: 6,11.39 kw:
6,8.97

sp: -0.04 sp: 0.03

Over-
whelmed

sp:
0.07**

kw:
6,9.36

sp: -0.01 sp: -0.07* kw: 6,11.71 kw: 6,12.57 kw:
6,19.89**

sp:
-0.07**

sp:
0.08**

sp:
0.21***

Distracted sp: 0.04 kw:
6,4.94

sp: 0.01 sp: 0.07** kw: 6,5.49 kw: 6,8.35 kw:
6,7.54

sp: 0.01 sp: 0.05 sp:
0.19***

sp:
0.24***

structure, content and impact on people.” [22] We note that
the categories we found mirror the main areas of study
suggested by Postman. The main categories of challenges
that emerged from our analysis are as follows:

• Developer issues
• Collaboration and coordination hurdles
• Barriers to community building and participation
• Social and human communication challenges
• Communication channel affordances, literacy, and

friction
• Content and knowledge management concerns

We report these challenges below. A few participants
also noted strategies they use to address the challenges
they face, which we describe in the Discussion section
of the paper. In the following, we provide representative
participant quotes (shown in italics and linked to each
participant using P#), and we use bolded text to indicate
codes we assigned to quotes. Note that some responses
from the survey were coded with multiple codes. The main
challenges that emerged from our analysis are shown in
boxes. When appropriate, we discuss and link the reported
findings to relevant literature. We summarize the categories
of challenges found, the main findings that emerged, and
the codes with their respective counts in Fig. 9. Further
details (linking categories to findings to codes, and counts
of codes and additional quotes) can be found on the com-
panion website8.

However, we stress that counting the coded challenges
could be misleading—only some participants took the time
to share this information with us after an already long
survey, and thus, they may have selected which challenges
to share with us in an ad-hoc manner. Nevertheless, for con-
cerns that were mentioned numerous times, the counts may
help us identify challenges that may be more prevalent and
warrant further investigation, and so we share these counts
to perhaps provoke future research. Two researchers inde-
pendently coded these challenges, iterating several times to
reach agreement on the codes derived and how they were
applied. When agreement was not reached, the researchers
followed a conservative approach and omitted applying
those codes to the survey responses.

7.1 Developer Issues
Some of the challenges reported concerned the developers
themselves or specific development activities.

8. http://thechiselgroup.github.io/channel-study/

Distractions and interruptions from communication chan-
nels negatively impact developer productivity:

Survey respondents spoke of how the social and com-
munication media at their finger tips can be a distraction
or can negatively impact their productivity through inter-
ruptions [23] (see also Fig. 8). As P165 mentioned, “Social
Networking Websites like Facebook are the worst ingredients for
good concentration in general.” P541 described how easy it is
to be drawn into unnecessary work: “If I spend a lot of time
talking with other developers about the best way to do things or
reading articles on social sites, I end up constantly refactoring or
optimizing code instead of making progress toward the functional
requirements of the project.”

P320 discussed how notifications and emails can be both
a cause for distraction and a waste of time: “Notifications:
when used in a moderate way, it is fine, but when overused, it is
a distraction for developers. Emails: too many emails from Project
Coordination Tools can easily waste 15-30 minutes only to go
through them all in the morning, specially when I’m involved in
more than a few projects simultaneously.”

Keeping up with new technologies and project activities
can be challenging, but social tools help:

Keeping up with new technologies was a concern for
our respondents: “Staying cutting edge is a never-ending task.”
[P625] Several respondents discussed not knowing which
channels to watch: “Knowing where the activity is. Some days,
Hacker News might be the best place to follow. Another day,
Twitter might be. Another day, GitHub might be where I should
look. Another day, it might be a site or network I’m not even
aware of.” [P1564] The challenge of keeping up also emerged
in our previous work that investigated how developers use
Twitter [12]. P706 discussed how they found it easier to keep
up with technology in open source because of their use of
social tools: “Staying up to date with new company internal
technology because it is not on Twitter [or] Hacker News. I guess
there is a theme here: if it’s open source, help is plenty and readily
available, not so much for internal tools.”

Tools for keeping up with activities on projects were
seen as inadequate and in need of improvement: “In a
big project (WebKit, Mozilla, etc.) it can be hard to filter for
only ongoing work that is relevant. Most legacy UIs are terrible
(Bugzilla) and new ones (GitHub) lack features for large-scale
development.” [P109] While Baysal et al. [24] also noted this
challenge, other respondents described how some modern
tools address it: “We use HipChat (kind of a private IRC)
with HUBOT that watches our GitHub activity. It’s wonderful

http://thechiselgroup.github.io/channel-study/

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 11

Developer Issues:
Distractions and interruptions from communication channels
negatively impact developer productivity

 Distractions 38*
 Interruptions 11*

Keeping up with new technologies and project activities can be
challenging, but social tools help

 Keeping up with new technologies 9
 Keeping up with activities on projects 8
Collaboration and coordination hurdles:

Sharing and explaining code lack adequate tool support
 Sharing code 4
 Explaining code 7

Getting feedback on development activities is challenging
 Getting feedback 8
 Proprietary projects 3

Collaborative coding activities need improved tool support
 Collaborative coding 3
Barriers to community building and participation:

Geographic, cultural and economic factors pose participation barriers
 Time zones 14
 Access to the Internet 3
 Language barriers 20

Despite social channels, finding developers to participate is difficult
 Finding right people 9

 Convincing others (to participate) 3
Social and human communication challenges:

Miscommunications on text-based channels are common
 Miscommunications 24

For many developers, face-to-face communication is best
 (Not) Face-to-face 24

People are challenging, no matter which channels are used
 Poor attitude 13
 Intimidated 12
Communication channel affordances, literacy and friction:

Developers need to consider channel affordances
 Private vs. public 10*
 Synchronous vs. asynchronous 10

 Ephemeral vs. archival 3
 Anonymous vs. identified 1
 Text-based vs. verbal 7
 Face to face (vs. not) see above
 No one tool fits all 14
 Communication with users 11

Developers need to be literate with communication channels
 Literacy 22
 Lack of documentation 9
 Learning tools 10

Communication channel friction can obstruct participation
 Tool friction 23
 Search is inadequate 16
 Poor mobile support 5
 Vendor lock-in concern 6
 Notification issues 5
 Poor channel integration 8
 Channel overload 36
 Poor adoption by others 21
Content and knowledge management:

Use of many channels leads to information fragmentation
 Information fragmentation 15

The quantity of communicated information is overwhelming
 Quantity 11*
 (Finding the signal in the) noise 19*

The quality of communicated information is hard to evaluate
 Quality 29
 Obsolete information 8
 Spam 4
 Niche technologies 4
 History of information missing 4
Strategies:

Developers used a variety of strategies to address their challenges
 Deciding when to use particular channels 3
 Deciding which channels to use and how 6
 Encouraging others to use tools 1
 Unplugging 3

Fig. 9. This shows the categories, codes, and counts of each code occurrence in the additional challenges shared by participants. Note that some
participants shared multiple challenges in the Other field. The categories of challenges we derived are shown in bold text; the findings that
emerged from the analysis are shown in italics, followed by the codes and counts in normal font. Codes marked with an * indicate challenges the
participants already indicated in the closed question (see Fig. 8). Strategies shared are described in the Discussion section of the paper.

because our entire team can be instantly notified about who’s
doing what on which repository, and we’re all in communication
via mobile and desktop with the same feed.” [P892] Keeping up
with projects also relates to how developers collaborate on
projects, which is discussed next.

7.2 Collaboration and Coordination Hurdles

Respondents spoke of the challenges they face managing
and coordinating their projects. As noted earlier, the vast
majority of respondents said they had contributed to two or
more projects, including professional projects (see Fig. 4).

Many of the challenges shared with us did not relate to
the use of communication channels but rather poor project
documentation, a lack of requirements management, poor
standards adherence, and managing software licenses.
Respondents also mentioned challenges specific to project
coordination, such as work distribution, workflow friction,
scheduling hurdles, and the lack of a roadmap: “A lot of
developers I know spend more time planning and debugging the
workflow, rather than developing.” [P49] Organizational con-
straints were also discussed, such as how outside communi-
cation was discouraged in one organization, and how there
was a reliance on proprietary services in certain projects.
However, some respondents did talk about the lack of tool

support for collaborative coding and coordination activities,
which is discussed next.

There is a lack of adequate tool support for sharing and
explaining code:

Developers had difficulties sharing code and explaining
code using their existing tools. P1416 discussed this issue
and how he dealt with it: “Many communication tools (email,
IM, etc.) are not especially good for talking about code. Generally
in any given conversation I’ll end up using several tools, e.g.,
IRC + a paste-bin (GitHub Gists), to effectively communicate
ideas.” P445 was enthusiastic about collaboration tool sup-
port except when needing to explain code: “The biggest
challenge in soft-dev for me is four-fold: communicating the idea
(Hangout), managing the idea (Trello), logging the implemented
idea (GitHub), and explaining the implemented idea with the team
(Nitrous.io). The first three solutions are pretty solid. It’s the fact
you can’t always sit right next to someone and show them the code
and explain how everything works that is the most challenging
part. Cloud9, Koding, Nitrous, etc. are all trying to solve the last
problem.”

Getting feedback on development activities is challenging:

Developers also faced challenges in getting feed-

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 12

back about their own activities, especially for proprietary
projects that can’t use social tools: “Getting quick feedback for
internal technology because you cannot ask on Stack Overflow.”
[P706] Sometimes the challenge of getting feedback can be
due to the size of the project (community) rather than the
channel: “It’s difficult to share small new projects that aren’t
very far along and get feedback.” [P751]

Collaborative coding activities need improved tool sup-
port:

Our survey concerned communication tools, but P1154
spoke of how coding tools do not adequately support col-
laborative coding activities: “Live collaborative coding tools.
For example, we can currently edit a document collaboratively in
Google Docs. If we can have an IDE/tool like that for coding too,
that would be useful.” Some Browser-based IDEs now provide
this support and are starting to see increased adoption [25],
such as Nitrous.io and Cloud9. Such tools may also address
the challenges of explaining code and getting real-time
feedback (as mentioned above).

7.3 Barriers to Community Building and Participation

Over half of the survey respondents said they contributed
to open source projects, many of which were “pet” projects
(see Fig. 4)—we can anticipate that most developers rely on
one or more open source projects or community-authored
resources such as Stack Overflow. Thus, it is not surprising
that many respondents found it challenging to participate
in or find others to join community-based projects.

Geographic, cultural, and economic factors can pose bar-
riers to participation through social channels:

The survey exposed challenges relating to geographic,
economic, and demographic factors. Respondents men-
tioned that different time zones interfered with their work,
as well as other issues such as poor access to the Internet
due to economic or political reasons. Language barriers
were also a common concern as many of the respondents
were from non-English speaking countries (see Fig. 3): “The
majority of development-related communication I do is primar-
ily written—IRC, chat, email, forums, microblogging, blogging,
etc. Considering that the developers I work with come from a
variety of nationalities and cultural backgrounds, the intent of
communication is often hard to impart or judge, which can lead to
misunderstanding.” [P31] These challenges may be reduced
in the future as modern tools such as Slack incorporate the
notion of time zones, while Skype now offers multilingual
support.

Despite using social channels, finding developers to par-
ticipate can be difficult:

A few developers also discussed challenges in finding
developers to collaborate with or convincing others to
participate. As P1285 mentioned, “I used to think that pub-
lishing application code with an open source license would attract
collaborators with an interest in using/improving that application,
but now I feel like most users of code hosting sites are more
interested in collaborating on tools they can incorporate into
their own projects, and almost no one is interested in working

on application code. I guess the challenge here is convincing
developers that your application is interesting even if your code
is not.” But P556 discussed how social tools make it easier
to reach people that could participate: “When I was first
contributing to an open source video game project on Google
Code, it was hard to get in touch with one or more of the core
developers of that project because there was no right place/tool to
do that. The same project moved to GitHub recently, and now I
feel more comfortable because I can simply make a pull request to
the project.”

7.4 Social and Human Communication Challenges

Many respondents specifically mentioned struggling with
communication or people issues. We discuss a selection of
the most prominent themes below.

Miscommunication on text-based channels is common:

Respondents frequently mentioned experiencing issues
due to miscommunications on text-based channels, which
P385 discussed: “With the increasing amount of communication
being done with social tools and IMs, chat, the amount of misun-
derstanding and bad, incomplete briefs grows [at] the same rate.”
P126 described how much more effort text-based communi-
cation requires: “When you write, context and expression is lost.
There have been so many times when something I wrote did not
come across to the other person as intended. This causes problems
all the time. You must be careful and spend time on the words and
phrases you use when communicating in text. If you can’t pick
up the phone, then use IM, and as a last resort, email.” P1331
agreed with this and mentioned how slang can introduce
even more ambiguity.

Text-based miscommunication also relates to the lan-
guage barriers mentioned above. As P31 lamented, “The
lone shooter that misunderstands you and begins shooting at you.
[I] have been called an arrogant dickhead once and have also been
informed that I was dictating somebody something when I actually
tried to SUGGEST something. So, language is also a challenge
because I am a Dane.”

For many developers, face-to-face communication is best:

Many respondents shared the opinion that “nothing re-
places face-to-face communication” when trying to avoid mis-
communications. As P136 explained, “Without face-to-face
communication, misunderstandings happen more often.” Other
developers discussed how face-to-face communication is
needed for activities such as code review and for explaining
the big picture underlying a design, as P319 mentioned,
“When working apart people aren’t always at their computer or
responding to messages, and in the case of code review they have
to summarize their thoughts into a few paragraphs. In person it’s
much easier to convey a thought, have a discussion and come to
a resolution.” P1241 added, “Clarity of intent (it can be hard to
get a point across through text-based media)—it can be difficult
to see the big picture, or even the pieces, without talking face to
face.”

P176 mentioned that to address such issues, some com-
panies move their staff on-site: “Often collaboration tools are
still not as good as face-to-face communication. Many software
companies have moved to having all of their staff on-site full-time,
because the communication is just better. Especially when two or

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 13

more developers are collaborating on the same code in real time
(pair programming) or ‘whiteboarding’ on a design... being there
in person is just different.”

Others shared with us that there are tools that can sup-
port face-to-face-like interactions: “Often times it is difficult
to get ideas across in written communication. This is where tools
such as Google Hangout and Skype can be beneficial, but they are
not always an option.” [P206] On the other hand, not everyone
wants face-to-face interactions. P737 mentioned their main
challenge was “other developers that insist on using face-to-face
communication exclusively.”

People are challenging, no matter what channels are used:

Poor attitude and a lack of willingness to collaborate are
issues no matter what tools are used: “[Tools] still don’t solve
the difficult people problems.” [P264] As P532 explained, “Tools
facilitate good processes and interactions between individuals who
are willing to collaborate and cooperate. They don’t make people
willing to cooperate in the first place; in these situations they
actually get in the way of identifying the root problems and
dealing with them. People can hide behind GitHub better than
they can in person.”

P421 mentioned that the benefits of using these tools
can be achieved by ignoring some of these people issues:
“Personal restraint [with] people who are mean (or, dicks). Oth-
erwise, amazing area for learning and sharing.” P468 explained
that although tools bring opportunities for transparency and
collaboration, getting others to buy in can be tricky: “The
biggest challenge is getting other devs to be open both with their
work and to new ideas.”

The social transparency [26], [27] of the channels intro-
duced other issues [28]. Developers told us how they felt in-
timidated, either because they were worried that their own
contributions or skills were not good enough, or that others
may not react well to their contributions. As P302 told us,
“The biggest thing I fear in my work is that I’ll say something that
is not 100% technically accurate or could be misinterpreted. Other
developers are utterly merciless, and I have thin skin. Whenever I
post something on HN or Stack Overflow, I find that I feel anxious
that someone will tear me a new one over some oversight in
my analysis.” P643 discussed how feeling intimidated could
lead to repressed interactions within the community: “Lots
of people communicate less than they otherwise would for fear of
looking stupid to peers who are assessing them in a colossal global
meritocracy. Very unhealthy. I suspect it contributes to the high
prevalence of anxiety and depression in IT (in combination with
often sedentary lifestyles).”

7.5 Communication Channel Affordances, Literacy,
and Friction
Here we consider challenges that relate closely to the prop-
erties of the communication channels used, such as the
affordances of the channels, literacy needs, the impact of
the ways developers use (or misuse) the channels, and the
friction the channels may pose to development activities.

Developers need to consider channel affordances:

Different channels provide different kinds of affor-
dances, as Daft and Lengel’s Media Richness Theory de-
scribes [29]. But developers don’t always consciously think

about these affordances when choosing which channels to
use.

For example, communicating using face-to-face and ver-
bal channels is normally ephemeral as opposed to archival
and may be more suited to a smaller group size, but on the
other hand, “voice communication is much quicker, but it is not
easily transcribed and it is difficult to use with more than 3 (if not
2) people.” [P1224]

Developers also frequently referred to a tension be-
tween synchronous versus asynchronous communication
channels. P927 elaborated why asynchronous is sometimes
preferred: “I try to use asynchronous communication so [I] can
decide the time when to communicate and [I won’t] be disturbed
when [I’m] programming or learning! On the other side I have
the [ability] to talk face to face to the other developers in the
team, which is the most effective way to learn, coordinate etc.
But it is not asynchronous.” However, as mentioned, the
use of synchronous channels can lead to interruptions and
misunderstandings.

Developers experienced tension when having to choose
between private versus public communication channels:
“Many developers host their code projects on blogs, etc. Sometimes
the only way to communicate with the author is to post a
comment, since they do not disclose their email address. Also,
on forums, of say, a particular library—e.g., openCV forums. The
forum posters seem so professional and experienced, I tend to avoid
posting on the forum to avoid embarrassment (lol).” [P1036]
Some respondents reacted negatively to the transparent
nature of social networking tools over traditional commu-
nication media such as email: “Very few new developers are
learning how to use old tools such as email and are tending toward
using social networks and other tools. It can be frustrating when
you want to collaborate and they insist on proprietary software
or technology, or insist on using privacy-invasive tools such as
Skype or Facebook.” [P897] Some also experienced confusion
using channels where communication can be private or
public: “I am sometimes frustrated that there are too many
places to do the same thing, especially when I answer a question
privately and want to instead make that answer public.” [P137] In
contrast, P1399 shunned the use of private channels: “People
complaining about their privacy tend to slow down development.”

Another affordance touched on by P40 relates to the fan-
fare of the communication channels used: “Sending urgent or
major information is hard, too: how to highlight information sent
to others when they are free to ignore it?”

Developers shared with us that no single tool fits
all developers’ needs nor suits all stakeholders. Different
stakeholders have very different needs, therefore different
channel affordances will not suit everyone. “Different groups
in the entire team often prefer to use different tools. For example,
the coders will use GitHub, but a project manager and the
testing team will use Basecamp. This makes overall coordination
extremely difficult.” [P160]

Finding the right channel to support communication
with users is also a challenge. P1528 described how difficult
it can be to keep track of communication from users (and
other developers): “Users/developers tend to report bugs or ask
for new features with email and forum posts which can be tricky
to keep track of.” To address this, some projects promote
user reporting of issues on GitHub, but P394 explained the
potential disadvantage with this approach: “ ...it’s also a lot of

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 14

work to separate real, confirmed issues that we create from the tons
of not-always-useful stuff that our users create. I think the nail in
the coffin was when a user closed one of our bugs.” Moreover,
P700 did not appreciate any communication with users and
disliked the way social channels create opportunities for
users to contact them: “Users of my open source software often
feel entitled to free technical support. Because it’s so easy to reach
me, they can be a nuisance sometimes.”

Developers need to be literate with communication chan-
nels:

Inadequate communication channel literacy and a poor
understanding of channel affordances can lead to challenges
for developers wishing to collaborate, exchange informa-
tion, or network with others across their communities, as
P1005 said, “The main challenge for me is the interaction with
people who are not literate enough to use the tools I consider
standard.” P1600 discussed how Git (the underlying version
control system for GitHub) can be challenging to use: “Also,
Git is a critical collaboration tool, but it is not well understood
by many of the programmers I interact with.” Developers
recognize that learning these tools is a challenge. P1385
mentioned how using GitHub itself, or even IRC, can seem
difficult: “I still don’t understand how to do simple things in IRC
and often don’t bother because of the perceived effort involved—
much easier to post on Stack Overflow. With tools like GitHub,
there are similar issues (like how to submit patches) although
documentation is improving.”

Respondents discussed the challenges around having to
learn new tools. P404 felt that “the biggest challenge [about us-
ing] social tools during development is when a new one is adopted
into the mix; the learning curve associated with a new tool eats
time unless the program is intuitive and pointed.” P1315 empha-
sized how these channels require different communication
skills than when communicating face to face: “Basically a
very different way to communicate compared to face-to-face comm.
It simply has to be learned.” Furthermore, each new channel
may necessitate the acquisition of a different vocabulary.
P526 felt that “if you don’t know the right [vocabulary] or
technology you want to use, the [dialog] usually ends quickly.”
P981 mentioned that some of these tools are difficult to learn
because of a lack of documentation.

Literacy, however, is not just about knowing how to use
a particular channel, but when to use it and when not to use
it (depending on the need, e.g., to avoid interruptions).

Communication channel friction can obstruct participatory
development activities:

Technical issues introduced friction for developers, such
as the lack of mobile support, tools crashing, poor support
for search, annoying notifications, and hardware limita-
tions. P919 claimed that they “never have enough screens.”
This concern about monitors is not surprising given the
number of channels and tools developers use. Other tools,
despite being highly popular among developers, suffer us-
ability issues: “Hacker News dominates and is terrible.” [P1279]

Vendor lock-in was also an issue that was mentioned by
developers, and not surprisingly since many of the social
tools developers use are proprietary. P334 discussed this
issue at length: “Much of the value that we [are] responsible

for is now kept safe and maintained by a third party. It’s risky...
If eclipse.org, stackoverflow.com or github goes away, our team(s)
would suffer severe damages. I would love to be able to have my
own weekly backup of the social interactions that take place in a
format that is machine processable such that in the event of total
failure I could migrate our history of communication to another
host or another technology.” Projects also face issues when a
proprietary tool’s privacy policies change: “Having to shift
platforms when a company’s policies change (e.g. Facebook’s alter-
ing of privacy settings, SourceForge’s adware, Google’s pushing
Plus).” [P681]

Developers also mentioned usability issues getting in
their way—that collaboration tools and social tools can
introduce friction even though they bring benefits: “Code
review and collaboration tools (Asana, Trello) I mostly find to be
necessary to some extent but generally very annoying. Seems like
one more thing. Maybe they’re necessary evils, but they seem to
get in the way a lot.” [P1255]

Many challenges arise due to poor channel integration,
such as having to deal with identity management. P1430
explained the many issues that a lack of integration brings:
“Poor integration between them and an overabundance of options.
There are a lot of tools out there, but it’s hard to put them
together into a cohesive workflow. Especially when participating
in a lot of open source projects, every one has a different set
of overlapping but different tools. Another problem is identity
management. With personal projects and work projects, I’d like to
be able to manage them separately but without the inconvenience
of maintaining separate accounts.” Poor integration makes it
difficult to monitor multiple channels, but developers also
complained about channel overload—there are simply too
many channels to choose from and follow.

Poor or scattered tool adoption can also introduce fric-
tion, especially when there are many tools available: “There
are too many variants of things like project management tools,
time-trackers, issue-trackers ... it’s hard to get a team to agree
on tools, and none of these stand out as an obvious leader.”
[P694] And getting agreement on communication tools is
also difficult. P422 experienced difficulties “convincing other
developers on a project to all use the same communication tool
for [the] project.” The problems are exacerbated by globally
distributed teams: “I live internationally and work on globally
disparate project teams, so G11N [globalization] is a big deal.
Finding a consistently-used platform for such a large and varied
group of developers is also a challenge, as some only do IRC, others
only Google Groups, others only email.” [P380]

7.6 Content and Knowledge Management

Developers face challenges with information fragmenta-
tion and with the “quality/quantity of information available.”
[P1242]

Use of many channels leads to information fragmentation:

Information fragmentation results from the use of too
many channels: “One of the things that bugs me most is multiple
mediums. At any given moment I can get a chat, an email,
a text, or whatever—wish it was more streamlined.” [P1401]
Fragmentation also occurs because of the inconsistent or
poor adoption of particular channels (as discussed above).
P1250 suggested that one could address this by encouraging

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 15

others to use the same tools or by using tools that integrate
communicated information from multiple channels: “Mak-
ing sure everyone else you’re working with also uses the tools. One
of the biggest issues with fragmentation of the communication op-
tions is that there are so many different ways to communicate that
it’s harder to find it all in one place. Important communications
get lost; Key people don’t see them; They can’t be retrieved by
a single search tool. Companies such as Slack are attempting to
solve this problem, but it has a long way to go.”

The quantity of communicated information is overwhelm-
ing:

Developers found it challenging to find the “signal in
the noise”—the “explosion” of available channels has led
to an increase in volume and duplicate information posted
in multiple locations. This is particularly difficult for devel-
opers working on multiple projects where different tools are
used: “The variety of tools, and the need to switch context and tool
set between various sub-projects, adds a lot of cognitive overhead.”
[P815] There is also a fear of missing important information:
“Too many channels means that needed or interesting information
disappears, and going through all of the channels you mentioned
is impossible in limited time.” [P917] Although poor channel
integration that leads to information fragmentation is one
issue, the channels themselves further promote an increase
in the quantity of communication posts to attend to: “I feel
that social tools largely present information in fragments, with
many different approaches and styles and agendas, which makes
it time consuming to stitch together a working knowledge of
technologies I’m learning.” [P1189]

The diversity and velocity of information makes it hard
for developers to keep up with new technologies. As
P1409 put it, “There definitely is information overload. People
think I’m joking when I mention the ‘javascript framework of
the day’.” Developers try to stay up to date on these new
technologies [12], but the availability of so many differ-
ent news sites and aggregators means they are inundated
with content. P1144 told us how they affect productivity:
“The News overload via Aggregators (Hackernews, Reddit, Digg,
Slashdot, ...) affects productivity. I don’t use too much social
networking (Facebook or Twitter) as they are a huge time-sink and
sheer noise as far as technical development work is concerned.”

The quality of communicated information is hard to eval-
uate:

In addition to receiving too much information, many
developers described their concerns with the quality of the
information: “Judging the reliability and credibility of sources
can be a challenge as information changes quickly and isn’t always
correct.” [P846] There was a particular concern with social
sites, as P95 described, “I sometimes feel the lack of quality
content on social networks, q&a sites—especially when it comes
to incompetent answers to questions I ask. So the challenge is to
filter the information you get from all of the sources.” Develop-
ers were also concerned by discoveries of contradicting or
inconsistent information.

There were also complaints that some information may
be obsolete: “Technologies are moving so fast, and most of the
content on the Internet could be outdated quickly. It’s sometimes
hard to filter that outdated information.” [P492] Sometimes

the channels developers use are subject to spam. As P750
told us, “Recruiters keep spamming me through GitHub or
Stack Exchange looking for Web developers.” Developers also
described how it can be difficult to find content on niche
technologies and that it was hard to acquire and understand
the history of the information created.

8 DISCUSSION

Through our survey, we investigated how a complex ecosys-
tem of communication channels shapes and challenges a
participatory development culture.

We first discovered characteristics of the programmers
that participate in and contribute openly to projects hosted
on the GitHub social coding site. We now examine how the
reported respondent characteristics may indicate a lack of
participant diversity, as well as the implications that arise
from this.

Our survey asked respondents about their participatory
development activities. Previous research has focused on
development activities, but we discuss why it is important
to also consider non-development activities (such as net-
working and learning) in terms of understanding future tool
needs.

Next, we look at the complex ecology of communication
tools that our survey revealed. We compare our findings
about the benefits and challenges of using these tools to
existing research about communication tool use in global
software and open source development contexts. We also
share some recommendations that emerged directly from
the survey responses to address challenges developers ex-
perience using a complex communication and social tool
ecology.

Finally, we discuss some of the limitations of our study
and propose future research directions.

8.1 Characteristics of the Programmers Surveyed

Our survey was answered by developers that contribute
to publicly hosted software projects on GitHub. When we
designed our survey, we expected that this population
may be skewed towards younger, male, North American
developers, and that we might see differences across the
demographics in the number and types of tools used, and
their perceived benefits and challenges. Our expectations
were somewhat met—the respondents were skewed in the
manner we expected—but our analysis did not reveal dif-
ferences in the tools used or how they were used across the
varied developer demographics.

We were surprised that only 3.9% of our respondents
said they were female. We expected this number to be higher
as a recent survey of more than 2,000 FLOSS contributors
indicated that 10% were female [30]. Our statistic is, how-
ever, more in line with earlier surveys that indicated females
accounted for 1–5% of open source participants [31]. Com-
bined, these results may indicate an ongoing or increasing
lack of gender diversity in the FLOSS community. This lack
of gender diversity may go beyond FLOSS as many of our
survey participants were professional developers. A lack of
diversity has recently been shown to negatively impact pro-
ductivity in FLOSS projects [32], but we are also concerned

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 16

that skill development and networking benefits gained from
participating in FLOSS or publicly hosted projects may be
harder to achieve for certain groups of developers. Further
research is sorely needed to investigate if and how commu-
nication and social channels can be improved to reduce the
diversity gap in software development.

Another interesting but somewhat expected characteris-
tic about our respondents relates to their age: 77.9% said
they were 32 or younger, so-called millennials. Other sur-
veys with FLOSS developers also show similar distribu-
tions, e.g., [32], [30]. We expected that older developers may
not use the same set of tools or as many tools as younger
developers, but we did not see much of a difference, likely
because our survey was biased towards developers that
embrace social tools. We hope to repeat the survey with a
different population of developers. Our survey also showed
that older programmers are more likely to work on pro-
fessional projects and less likely to work on open source
projects. Meanwhile, we found that when a person is a
professional programmer, it is less likely they will contribute
to open source. One hypothesis is that some software orga-
nizations may discourage open source participation among
their employees, either directly or indirectly. Future work is
needed to investigate this.

8.2 Beyond Coding: Understanding Tool Needs for Par-
ticipatory Development

Previous research into tool needs has tended to focus on
development activities rather than the broader set of activ-
ities that are the hallmark of a participatory development
culture [6]. In our survey, we considered how commu-
nication and social tools are used to support a number
of different activities that developers care about, such as
learning and sharing with others, networking, and keeping
up to date with new technologies and project activities. The
participatory activities we inquired about were inspired by
Jenkins’ definition of a participatory culture [1], but our
previous literature review [6] revealed that this list of activ-
ities is also important to developers. However, it is possible
that this set of activities is not complete and that further
research is needed to understand the full set of participatory
development activities that need to be supported through
communication and social tools.

We feel it is important to understand the broader ac-
tivities that developers care about so that our future tools
and guidance on work practices can support these needs.
Although developers care about code quality and velocity,
they also recognize that they need to continuously learn
and network to create opportunities. Ultimately, this should
help improve the work they do on current as well as future
projects.

8.3 Towards Understanding the Ecology of Communi-
cation Channels Developers Use in a Participatory Cul-
ture

Through our survey, we were able to paint a picture of the
complex and broad ecology of tools that developers use. We
were also able to determine which tools were deemed to be
the most important for participatory development activities:

code hosting sites, face-to-face interactions, Q&A sites, and
search engines (Fig. 7).

It is not surprising that the majority of respondents said
code hosting sites were the most important (73% chose it),
as we contacted respondents via GitHub. Code hosting sites
serve an important role in providing version control, issue
tracking, and several means of communication between
developers.

Face-to-face and Question & Answer (Q&A) sites were
practically tied in second place. The importance of Face-to-
face implies that, even in a rich environment of electronic
communication channels, developers still have a strong
preference towards communicating in person. This finding
resonates with previous works on the impact of distance
in collaborative settings (e.g., [33], [34]). Although Face-to-
face is recognized as the “richest” channel for communica-
tion [35], we were still surprised that so many developers
said it was important. A high percentage of respondents
said they worked on distributed open source projects where
co-location is likely impossible—we suspect that many de-
velopers thought of Skype or Google Hangouts as a Face-to-
face channel.

We know from other research [36] that Q&A sites play a
prominent role in developers’ activities, but we do not know
if developers use it as a communication channel with other
developers (bidirectional communication) or mostly as a
resource where they can get quick answers to questions that
they have (unidirectional communication). We also suspect
that the goal of Search (the fourth most important channel)
may be related to the goal of Q&A sites, as answering
technical questions is one of the most important developer
information needs [37], [38] and resources such as Stack
Overflow are designed to be reached through Search tools.

Giuffrida and Dittrich [20] reported on the usage of
social software in software engineering projects and in
distributed teams through a systematic mapping study.
They discussed the use of instant messaging for reducing
communication barriers between remote collaborators. In a
related work, Dittrich and Giuffrida [14] explored the role of
instant messaging in a global software development project
and found that IM not only supports communication among
distributed team members, but also provides a means to
build trust and social relationships among co-workers. In
our survey, Private (e.g., Skype chat) and Public (e.g.,
IRC) chats were deemed as the most important channels
by nearly 15% of our survey respondents (6th and 9th
positions, respectively; see Fig. 7), which indicates the im-
portance of chat tools for supporting development activities,
especially regarding informal communication.

Giuffrida and Dittrich [20] also mapped studies on the
use of blogs and microblogs. In our survey, Microblogs
were deemed as the most important channel by over 200
respondents (nearly 20% chose it), thus earning the 5th
position, while Blogs ranked 7th. Our qualitative analysis
showed that both of them help increase awareness of the
most up-to-date developments in developer communities. It
is important to note that the vast majority of papers found
in Giuffrida and Dittrich’s systematic mapping refer to the
use of communication channels in enterprise settings. As the
demographics of our survey indicate, our survey population
is more mixed, including professional, open source, and

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 17

hobbyist developers. Further research is needed to explore
the interplay between private and public software develop-
ment when it comes to communication channel usage.

It is also important to note that most studies that have
explored how social tools are used in software development
studied just one or two communication or social tools [6],
[20]. One exception is a short survey conducted by Black et
al. in 2010 where they found that several social media tools
were used to support development work [18]. Another key
exception is the work by Turner et al. [17] where they
studied the “workplace communication ecology” in a small
company of about 50 participants using surveys in 2008 and
2009, followed by interviews with 23 participants. They re-
ported on clusters of tools used, as well as the strengths and
weaknesses from the various channels. Since the employees
were co-located, not surprisingly, Face-to-face was the most
preferred communication channel.

The ecology of tools that developers use is interesting to
study because we see developers using multiple tools for
the same activity, as well as using more tools over time.
Turner et al. [17] also found an increase in the number of
tools used as far back as 2009. We stress that this increasing
reliance on a complex constellation of tools brings several
challenges, as discussed in the findings above and as Giuf-
frida et al. presented in their mapping study [20].

Next, we discuss preliminary recommendations for prac-
titioners wanting to address some of these challenges, but
we also call on the research community to study these issues
further and to suggest new processes or tools to address the
increasing participatory needs of software developers.

8.4 Recommendations for Practitioners Choosing
Tools
In our survey, we probed through an open-ended question
about the challenges developers face using an ecosystem
of communication channels. These challenges point to a
number of recommendations that may be helpful to other
developers. In the following, we formulate some recommen-
dations for developers that rely on a number of communi-
cation channels while engaging with a participatory culture
of software development. Our recommendations are partly
based on our literature review as well as on strategies the
survey respondents reported using to address the various
challenges they experienced. We coded and categorized
these shared strategies, as shown in Fig. 9.

We stress, however, that future research is needed to
validate these recommendations and that this set of recom-
mendations is likely not complete; discovering them was
not one of our research goals, and thus our survey did not
explicitly attempt to elicit such recommendations.

Recommendation 1: Be aware of channel affordances and
choose tools accordingly.

There is a vast array of communication channels that
today’s developers (and other knowledge workers) can use
(see Fig. 1). Particular channels offer different affordances,
as described by the “Media Richness” theory [33] and as
elaborated in Section 7.5 of this paper. For example, some
channels offer more immediacy for communication (e.g.,
face-to-face) while asynchronous channels such as email

offer a chance for deeper reflection before having to respond.
Other channels, although immediate, may introduce distrac-
tions.

In previous work, Treude et al. [39] investigated the
properties of different documentation channels in software
projects and found that different channels had different
benefits and drawbacks. For example, they found that blogs
were seen to generate more fanfare than wikis and were
more suitable for posting important announcements that
should not be missed, whereas wikis were easier to change.
Similarly, Calefato et al. [40] discuss the appropriateness
of different communication media to support distributed
requirements engineering.

Developers may not always be consciously aware of
channel affordances and the trade-offs between them. How-
ever, they need to learn to recognize the strengths and
weaknesses of different channels and to recognize tensions
between private vs. public channels, synchronous vs. asyn-
chronous communication, ephemeral vs. archival channel
properties, anonymous vs. identified participation, and
support for different communication types, such as textual
vs. verbal vs. face-to-face conversations.

Recommendation 2: Define a communication covenant with
project members.

To enhance distributed work, Olson and Olson [33]
suggest that teams create a “communication covenant” to pre-
scribe which channels should be used for different kinds of
communication within a team. Similarly, Giuffrida and Dit-
trich [19] conceptualize the role of communication channels
in helping to establish persistent coordination mechanisms
among team members. Indeed, many successful open source
projects recommend which channels to use, such as how the
Angular project specifies which channels should be used for
different activities9. P253 felt that collaborators should not
just agree on tools, but also agree on how they must be used:
“The tool matters less than how people use it. Biggest problem is
people not using tools the way it was agreed upon.” Although
some project teams do figure this out without a formal
covenant: “Small autonomous projects/teams who have a fairly
mutual understanding of what communication/collaboration tools
they want to use to achieve their needs/goals tend to experience
little communication friction, I find.” [P783]

Giuffrida et al. [20] also suggest that groups need to
pay attention to how tools are socially negotiated. Social
protocols and tools not only need to be initially decided
upon, but also adopted and adapted by people over time,
thus being socially shared, modified, and appropriated [19].
Furthermore, other researchers have noted that there is a
need to establish practices on how to use social software in
development contexts [20].

Recommendation 3: Think lean when adopting new tools.

A common challenge reported by our respondents was
channel overload, as discussed above. Although there are
many possible channels that developers can use, using

9. https://github.com/angular/angular.js/blob/master/
CONTRIBUTING.md

https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md
https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 18

too many will lead to feeling overwhelmed from manag-
ing different tools and will also increase the chance that
information is fragmented across different channels. P232
suggested a way to address this: “The use of numerous tools
may be overwhelming. It is usually assumed that it is better to
use fewer tools, and increase the direct communication frequency
between developers using face-to-face or chat.”

Recommendation 4: Stay abreast of the latest tools that may
improve development productivity and team work.

This recommendation may seem to contradict the last
recommendation to use fewer tools, but many of the more
recent tools (such as Slack) aggregate communication from
different tools through one channel. We learned from our re-
spondents that no one tool fits all needs, as P980 mentioned,
“There are too many sources of communication to monitor, I
have been trying to use tools like HipChat and Flowdock to get
a more unified communication channel.” Likewise, new tools
may emerge that address other challenges and they should
be considered for adoption.

Recommendation 5: Take the time to learn how to use the
channels most effectively.

As discussed above, tool literacy is considered to be
very important. P488 described how poor literacy with team
members can lead to frustrations: “Lesser-skilled developers
(typically designer-developers) sometimes struggle to use the com-
mon tools like Git/GitHub, screen sharing, text-based communi-
cation and to configure their own development environment. This
[means those] collaborating remotely get bogged down in stupid
troubleshooting sessions.” P729 described how important it is
to develop skills that make the most of particular channels
and avoid challenges such as noise: “Developing filter skills
to pick out the important things from the noise.”

Recommendation 6: Know when to unplug.

Some respondents described how they unplug from the
Internet or from specific communication channels to allow
them to focus and to avoid interruptions and distractions.
P1336 shared how they consciously decide when to use
certain communication channels: “I turn off most commu-
nication tools at the right times (i.e., when I’m not in need of
feedback or help). I’ll still use GitHub for finding resources and a
private messaging tool, HipChat or email for quick questions.”
Similarly, P534 described using a command line tool to
avoid distractions in the Browser: “If you have to go to a Web
browser there is a 10% chance you’ll be distracted. I use the project
‘howdoi’ to get answers from Stack Overflow on the command line
so I can stay out of the browser and keep focus.”

P825 discussed how it is important to be mindful about
how one feels: “Biggest challenge is meta–e.g. *noticing* when
I’m feeling overwhelmed or distracted and adjusting to adapt (e.g.
closing IRC, taking a twitter hiatus, etc)”. P646 recommended
that “one needs to exercise self control when using these tools,
otherwise it’s easy to end up spending more time on them than
needed.” P692 went one step further, suggesting that “some-
times it helps to have a day of development where you unplug
[the] Internet.”

8.5 Limitations
Studying the participatory culture of software development
is challenging because it involves understanding the tools
and communication channels developers use, the content gen-
erated through these channels, the developers themselves and
their perspectives, the development activities and actions
supported by the tools, and the interplay between all of
these aspects. Through our survey, we aimed to focus our
investigation on the communication channels developers
use to support their participatory development activities, as
well as developers’ perspectives concerning the use of these
communication tools.

We opted to use a survey instrument to reach a broad
population of developers. The survey design followed sev-
eral phases of design and pilot studies as we needed to
compromise between developer time and the amount of
information we gathered. The survey inclusion criteria sug-
gest participant bias towards social code hosting systems,
however, this population was the focus of our study. There-
fore, we do not claim generalizability of our results to all
developers. Our survey and the underlying source code are
available online.

At least 60% of our respondents work in Web develop-
ment. Our results resonate with an increase in the popularity
of Web technologies and programming languages such as
JavaScript and CSS 10. However, our findings may also
be biased towards development practices that are most
commonly found in Web development projects.

Despite their length, the 2013/2014 surveys had
21%/16% response rates, respectively. Many developers told
us they were happy to contribute to this research as they
were also curious about the channels other developers use
and the challenges others experience. Since the survey was
long, the respondents may have suffered from fatigue and
may have selected fewer channels for activities further into
the survey, and the earlier responses to questions may have
influenced later responses. We considered randomizing the
order of the questions, but we opted for a more logical
order as we felt developers would find it easier to answer
questions in this manner.

Another limitation (that we recognized as we conducted
our study) is that the tools developers use are changing
faster than we can study! For example, Slack was not widely
adopted at the start of our survey, but is now used by a great
many developers.

Although our findings from the demographics and chan-
nel usage questions are insightful, the data we received
about the challenges developers face was the most inter-
esting as we learned how tools may benefit but also nega-
tively impact developer work practices. To offset bias during
coding, we recruited an independent coder to analyze our
data. When the coders did not agree, we did not apply
the code. We stress that the counts we report may not be
an accurate indicator of the importance of the additional
challenges as this was an optional open-ended question
posed at the end of a long survey. In the presentation of the
challenges, we rely heavily on the developers’ own words
to bring credibility to our findings. In Fig. 9, we provide
counts for each code and further expand this table in the

10. https://github.com/blog/2047-language-trends-on-github

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 19

companion website11 with additional quotes. Future work
is needed, however, to determine the importance of these
challenges, as well as reveal additional strategies to address
these challenges and to validate the recommendations we
provided above.

Finally, we emphasize that our study is just one step in a
larger effort towards forming a theory of knowledge work in
a participatory culture of development, as we discuss next.

8.6 Future Work
Our study paves the way for the development of theories
concerning how developers use tools and suggests ways
that tools may be improved. The software engineering com-
munity has witnessed a major paradigm shift in recent years
in how developers communicate and participate in each
other’s projects and in each other’s learning. There is a great
need to study emergent software practices as well as the tool
constellations that modern developers use.

To date, we have collected data from two large-scale
surveys (in 2013 and 2014), but we intend to deploy the
same in future years (with some changes to account for
newer communication channels) as we wish to understand
how the use of communication channels by developers may
evolve over time. But surveys are limited in the kinds of
data and insights they can provide.

As a continuation of this study, we anticipate that future
interviews with developers would shed more light on the
strategies they use to mitigate the challenges we revealed in
our survey. Observations may also uncover other challenges
as well as how developers are using new tools (such as
Screen Hero12, which supports collaborative screen sharing)
and how they use homegrown tools.

Additionally, these studies should be extended to com-
mercial projects—i.e., non-open source projects—with dif-
ferent constraints and restrictions (e.g., being forced to use
specific tools). The themes that emerged in this study will
help form a new version of the survey13.

Our future work will allow us to further develop a
descriptive theory on how different channel affordances
may shape participatory development activities. Our hope
is that this theory can be used to help developers and
tool designers anticipate the benefits and challenges certain
combinations of tools may bring, as well as reveal new
opportunities for tool improvements and work practices.

Currently, the vast majority of the tools developers adopt
and rely on are developed by industry. We suggest that
researchers may be able to play a bigger role in tool design
by understanding the implications of the tools that are used
and then revealing ways they may be improved. For exam-
ple, tools that offer aggregation mechanisms may address
the information fragmentation issues, or there may be ways
that tools can be improved to address cultural barriers.

9 CONCLUSIONS

While this study is part of ongoing research, it presents
several key contributions: the survey instrument; demo-

11. http://thechiselgroup.github.io/channel-study/
12. https://screenhero.com/
13. http://thechiselgroup.org/2013/11/19/

how-do-you-develop-software/

graphics of the social programmer; which channels de-
velopers use to support their participatory development
activities, and which ones are most important to them; and
the challenges developers face using a broad spectrum of
tools while engaging in participatory development work
practices. We also provide a number of preliminary rec-
ommendations that developers may follow to address the
challenges we presented.

Finally, communication channels shape and challenge
the participatory culture in software development. How-
ever, the reverse is also true: not much is understood about
the impact of the participatory culture on software develop-
ment practices and the communication channels developers
use. We believe this research also has implications on other
knowledge workers; software developers are referred to as
the knowledge worker prototype as they are not only the first
to use and shape the tools and channels, but also have far
lower barriers to build and tweak these tools [41]. It won’t be
surprising if the challenges and opportunities that emerged
from our study will propagate to other domains as well.

ACKNOWLEDGMENTS

The authors would like to thank the respondents for taking
so much time to answer the survey, as well as Cassandra
Petrachenko for assistance with coding and editing of the
paper.

REFERENCES

[1] H. Jenkins, Confronting the challenges of participatory culture: Media
education for the 21st century. Mit Press, 2009.

[2] E. C. Wenger and W. M. Snyder, “Communities of practice: The
organizational frontier,” Harvard business review, vol. 78, no. 1, pp.
139–146, 2000.

[3] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey,
and K. Schneider, “Mutual assessment in the social programmer
ecosystem: An empirical investigation of developer profile aggre-
gators,” in Proceedings of the 2013 conference on Computer supported
cooperative work. ACM, 2013, pp. 103–116.

[4] M. Chui, J. Manyika, J. Bughin, R. Dobbs, C. Roxburgh,
H. Sarrazin, G. Sands, and M. Westergren. (2012) The so-
cial economy: Unlocking value and productivity through
social technologies. http://www.mckinsey.com/insights/high
tech telecoms internet/the social economy.

[5] F. Lanubile. (2013) Social software as key enabler of collab-
orative development environments. http://www.slideshare.net/
lanubile/lanubilesse2013-25350287.

[6] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and
A. Zagalsky, “The (r)evolution of social media in software
engineering,” in Proc. of the 36th Intl. Conf. on Software
Engineering, Future of Software Engineering, ser. FOSE ’14. New
York, NY, USA: ACM, 2014, pp. 100–116. [Online]. Available:
http://doi.acm.org/10.1145/2593882.2593887

[7] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery
in free/libre and open source software team communications,”
in System Sciences, 2006. HICSS ’06. Proceedings of the 39th Annual
Hawaii International Conference on, vol. 6, Jan 2006, pp. 118a–118a.

[8] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social
coding site,” in Proceedings of the 35th International Conference on
Software Engineering, ser. ICSE ’13, 2013, pp. 112–121.

[9] J. Fried and D. H. Hansson, Remote: Office Not Required. Ebury
Digital, 2013.

[10] P. Naur, “Programming as theory building,” Microprocessing and
microprogramming, vol. 15, no. 5, pp. 253–261, 1985.

http://thechiselgroup.github.io/channel-study/
https://screenhero.com/
http://thechiselgroup.org/2013/11/19/how-do-you-develop-software/
http://thechiselgroup.org/2013/11/19/how-do-you-develop-software/
http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_social_economy
http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_social_economy
http://www.slideshare.net/lanubile/lanubilesse2013-25350287
http://www.slideshare.net/lanubile/lanubilesse2013-25350287
http://doi.acm.org/10.1145/2593882.2593887

0098-5589 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2016.2584053, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 41, NO. 7, SEPTEMBER 2015 20

[11] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v.
Deursen, “Communication in open source software development
mailing lists,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 277–286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487139

[12] L. Singer, F. Figueira Filho, and M.-A. Storey, “Software
engineering at the speed of light: How developers stay
current using twitter,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE ’14. New York,
NY, USA: ACM, 2014, pp. 211–221. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568305

[13] E. Shihab, Z. M. Jiang, and A. Hassan, “On the use of internet relay
chat (irc) meetings by developers of the gnome gtk+ project,” in
Mining Software Repositories, 2009. MSR ’09. 6th IEEE International
Working Conference on, May 2009, pp. 107–110.

[14] Y. Dittrich and R. Giuffrida, “Exploring the role of instant messag-
ing in a global software development project,” in Global Software
Engineering (ICGSE), 2011 6th IEEE International Conference on, Aug
2011, pp. 103–112.

[15] W. Scacchi, “Understanding the requirements for developing open
source software systems,” Software, IEE Proceedings -, vol. 149,
no. 1, pp. 24–39, Feb 2002.

[16] M. McLuhan and Q. Fiore, The medium is the message, New York,
1967.

[17] T. Turner, P. Qvarfordt, J. T. Biehl, G. Golovchinsky, and M. Back,
“Exploring the workplace communication ecology,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2010, pp. 841–850.

[18] S. Black, R. Harrison, and M. Baldwin, “A survey of social media
use in software systems development,” in Proceedings of the 1st
Workshop on Web 2.0 for Software Engineering. ACM, 2010, pp. 1–5.

[19] R. Giuffrida and Y. Dittrich, “A conceptual framework to study the
role of communication through social software for coordination
in globally-distributed software teams,” Information and Software
Technology, vol. 63, pp. 11 – 30, 2015. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S095058491500049X

[20] ——, “Empirical studies on the use of social software in
global software development a systematic mapping study,”
Information and Software Technology, vol. 55, no. 7, pp. 1143 –
1164, 2013. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0950584913000153

[21] C. Treude, F. Figueira Filho, B. Cleary, and M.-A. Storey, “Pro-
gramming in a socially networked world: the evolution of the
social programmer,” in Proceedings of the Workshop on The Future
of Collaborative Software Development, ser. CSCW ’12. New York,
NY, USA: ACM, 2012, pp. 1–3.

[22] N. Postman, “The humanism of media ecology,” in Proceedings of
the Media Ecology Association, vol. 1, 2000, pp. 10–16.

[23] C. Parnin and S. Rugaber, “Resumption strategies for interrupted
programming tasks,” Software Quality Journal, vol. 19, no. 1,
pp. 5–34, 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11219-010-9104-9

[24] O. Baysal, R. Holmes, and M. W. Godfrey, “No issue left
behind: Reducing information overload in issue tracking,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE ’14. New
York, NY, USA: ACM, 2014, pp. 666–677. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635887

[25] M. Goldman, G. Little, and R. C. Miller, “Real-time collaborative
coding in a web ide,” in Proc. 24th annual ACM symposium User
interface software and technology. ACM, 2011, pp. 155–164.

[26] H. C. Stuart, L. Dabbish, S. Kiesler, P. Kinnaird, and R. Kang,
“Social transparency in networked information exchange: A
theoretical framework,” in Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work, ser. CSCW ’12. New
York, NY, USA: ACM, 2012, pp. 451–460. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145275

[27] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding
in github: Transparency and collaboration in an open software
repository,” in Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work, ser. CSCW ’12. New
York, NY, USA: ACM, 2012, pp. 1277–1286. [Online]. Available:
http://doi.acm.org/10.1145/2145204.2145396

[28] I. Steinmacher, T. U. Conte, M. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in
open source software projects,” in Proceedings of the 18th ACM
conference on Computer supported cooperative work & social computing,
2015, pp. 1–13.

[29] R. L. Daft and R. H. Lengel, “Organizational information require-
ments, media richness and structural design,” Management science,
vol. 32, no. 5, pp. 554–571, 1986.

[30] G. Robles, L. Arjona Reina, A. Serebrenik, B. Vasilescu,
and J. M. González-Barahona, “Floss 2013: A survey dataset
about free software contributors: Challenges for curating,
sharing, and combining,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR ’14. New
York, NY, USA: ACM, 2014, pp. 396–399. [Online]. Available:
http://doi.acm.org/10.1145/2597073.2597129

[31] P. A. David and J. S. Shapiro, “Community-based production of
open-source software: What do we know about the developers
who participate?” Information Economics and Policy, vol. 20,
no. 4, pp. 364 – 398, 2008, empirical Issues in Open Source
Software. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167624508000553

[32] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand,
A. Serebrenik, P. Devanbu, and V. Filkov, “Gender and tenure
diversity in github teams,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, ser. CHI
’15. New York, NY, USA: ACM, 2015, pp. 3789–3798. [Online].
Available: http://doi.acm.org/10.1145/2702123.2702549

[33] G. M. Olson and J. S. Olson, “Distance matters,” Hum.-Comput.
Interact., vol. 15, no. 2, pp. 139–178, Sep. 2000. [Online]. Available:
http://dx.doi.org/10.1207/S15327051HCI1523 4

[34] P. Bjørn, M. Esbensen, R. E. Jensen, and S. Matthiesen, “Does
distance still matter? revisiting the cscw fundamentals on
distributed collaboration,” ACM Trans. Comput.-Hum. Interact.,
vol. 21, no. 5, pp. 27:1–27:26, Nov. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2670534

[35] A. R. Dennis and S. T. Kinney, “Testing media richness theory in
the new media: The effects of cues, feedback, and task equivocal-
ity,” Information systems research, vol. 9, no. 3, pp. 256–274, 1998.

[36] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and
B. Hartmann, “Design lessons from the fastest q&a site
in the west,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’11. New
York, NY, USA: ACM, 2011, pp. 2857–2866. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1979366

[37] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in
collocated software development teams,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 344–353.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.45

[38] A. Begel and T. Zimmermann, “Analyze this! 145 questions for
data scientists in software engineering,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE ’14.
New York, NY, USA: ACM, 2014, pp. 12–23. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568233

[39] C. Treude and M.-A. Storey, “Effective communication of
software development knowledge through community portals,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 91–101.
[Online]. Available: http://doi.acm.org/10.1145/2025113.2025129

[40] F. Calefato, D. Damian, and F. Lanubile, “Computer-mediated
communication to support distributed requirements elicitations
and negotiations tasks,” Empirical Software Engineering, vol. 17,
no. 6, pp. 640–674, 2012.

[41] A. Kelly, Changing Software Development: Learning to Become Agile.
John Wiley & Sons, 2008.

http://dl.acm.org/citation.cfm?id=2487085.2487139
http://doi.acm.org/10.1145/2568225.2568305
http://www.sciencedirect.com/science/article/pii/S095058491500049X
http://www.sciencedirect.com/science/article/pii/S095058491500049X
http://www.sciencedirect.com/science/article/pii/S0950584913000153
http://www.sciencedirect.com/science/article/pii/S0950584913000153
http://dx.doi.org/10.1007/s11219-010-9104-9
http://dx.doi.org/10.1007/s11219-010-9104-9
http://doi.acm.org/10.1145/2635868.2635887
http://doi.acm.org/10.1145/2145204.2145275
http://doi.acm.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2597073.2597129
http://www.sciencedirect.com/science/article/pii/S0167624508000553
http://www.sciencedirect.com/science/article/pii/S0167624508000553
http://doi.acm.org/10.1145/2702123.2702549
http://dx.doi.org/10.1207/S15327051HCI1523_4
http://doi.acm.org/10.1145/2670534
http://doi.acm.org/10.1145/1978942.1979366
http://dx.doi.org/10.1109/ICSE.2007.45
http://doi.acm.org/10.1145/2568225.2568233
http://doi.acm.org/10.1145/2025113.2025129

