
Improving the Adoption of
Software Engineering Practices

Through Persuasive Interventions

Von der Fakultät für Elektrotechnik und Informatik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften
Dr. rer. nat.

genehmigte Dissertation

von

M. Sc. Leif-Gerrit Singer

geboren am 16. September 1979 in Hannover

2013

Referent: Prof. Dr. Kurt Schneider
Korreferent: Prof. Dr. Arie van Deursen
Tag der Promotion: 11. Februar 2013

Für Claudi und Iven.

Leif Singer. Improving the Adoption of Software Engineering Practices
Through Persuasive Interventions. PhD thesis, Gottfried Wilhelm Leibniz
Universität Hannover, 2013.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/

by-nc-nd/3.0/).

Section 5.2 of this work is based on the work Creating a Shared Un-
derstanding of Testing Culture on a Social Coding Site to be published
by the IEEE in Proceedings of the 35th International Conference on
Software Engineering [140]. Find the relevant copyright notice below.

c• IEEE, 2013. This is a minor revision of the work to be published
in the Proceedings of the 35th International Conference on Software
Engineering, ICSE 2013, New York, NY, USA, 2013.

Section 5.3 of this work is based on the work Mutual Assessment in
the Social Programmer Ecosystem: An Empirical Investigation of De-
veloper Profile Aggregators to be published by the ACM in Proceedings
of the ACM 2013 conference on Computer Supported Cooperative Work
and Social Computing [162]. Find the relevant copyright notice below.

c• ACM, 2013. This is a minor revision of the work to be published in
the Proceedings of the ACM 2013 Conference on Computer Supported
Cooperative Work and Social Computing, CSCW ’13, New York, NY,
USA, 2013.

ISBN 978-1-291-27311-3

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Acknowledgments

This thesis would not have been possible — or, at least, would have been less
possible — without the support from many others. They taught, helped,
and challenged me in various ways and contributed to my development in
one way or another.

I am deeply grateful to my parents. They supported me in my endeavors,
even though some of them might not have seemed too useful back then.

Stefan, thanks for your fearless, hands-on approach to learning. I can’t
possibly say how much that helped me finding my way.

I thank my advisor, Prof. Dr. Kurt Schneider, for first providing me with
advice and so many opportunities, and then, later, the freedom to develop
and to work on what I felt passionate about. I thank my second examiner,
Arie van Deursen, for his challenging comments.

I thank my local colleagues for a great workplace. Especially Olga and
Raphael: thank you for a fun, energetic o�ce. Sebastian, thank you for your
companionship over the years. Daniel, I’m still grateful for your mentorship,
especially during the studies for my Master’s.

Throughout my studies, I got to know so many interesting and kind
researchers — some of them in person, some only remotely. I’m deeply
grateful to you all for making me feel so welcome in this community.

I thank those who participated in our experiment, interviews, and ques-
tionnaires. The kindness and generosity of complete strangers delight me
again and again. I’m especially thankful to Vanessa Ramos of Master-
branch and Matthew Deiters of Coderwall, who both supported the study
documented in section 5.3.

Thank you, Claudi, for your ongoing support and understanding. With-
out you, this would not have been possible and certainly less worthwhile.
Finally, Iven — you might not have understood much of what was going
on during these days, but your enthusiasm helped me getting through the
rougher ones.

Hannover, February 2013 Leif Singer

iii

Abstract

Software engineering practices and methodologies are not always adopted
by software developers, even if these approaches are mandated by the de-
velopers’ organization. Research has uncovered di�erent reasons for this:
for example, missing motivation, peer pressure, perceived usefulness, or
perceived complexity can all prevent developers from successfully adopting
a practice or methodology. However, software engineering practices and
methodologies can have a significant positive impact on software quality
and developer productivity: for example, pair programming can lead to im-
provements in code correctness, and the use of design patterns can improve
developers’ productivity as well as reduce defects. Issues with adoption can
therefore have a negative impact on a software development organization.

Most research in this area has concentrated on explaining adoption prob-
lems. Among the findings originating from this research is the insight that
mandating a behavior alone cannot solve adoption problems. Solution ap-
proaches should instead augment the mandating of practices to include
other factors that are important for the di�usion of innovations. Such
factors include social influence, knowledge management, motivation, and
persuasion.

This thesis proposes such an approach to improve the adoption of soft-
ware engineering practices by software developers. As an augmentation to
mandating practices, it uses persuasive — i.e., non-coercive — software-
based interventions that can facilitate creativity, autonomy, and other cru-
cial factors in software development. To support organizations in designing
such interventions, the thesis provides a catalog of adoption patterns: ab-
stract solutions to adoption problems. A systematic and iterative process
provides guidance in the application of these patterns to the organization’s
situation. An evaluation of this approach shows that the process and the
adoption patterns are e�ective: for student developers, a significant im-
provement in their application of best practices for version control was
achieved.

Improving the adoption of software engineering practices in a supportive,
non-coercive manner may not only have a positive impact on the time, costs,

and quality of software development projects. According to prior research,
such an approach can also support employee satisfaction, productivity, and
retention.

Keywords: software engineering, best practices, adoption, di�usion of
innovations, motivation, social media, social software, persuasive technol-
ogy, coercion.

vi

Zusammenfassung

Praktiken und Methodiken des Software Engineering werden nicht immer
von Entwicklern übernommen, selbst wenn diese vorgeschrieben sind. Bish-
erige Forschung hat hierfür verschiedene Gründe aufgedeckt: fehlende Mo-
tivation, Druck von Kollegen, die wahrgenommene Nützlichkeit, oder auch
die wahrgenommene Komplexität können Entwickler davon abhalten, Prak-
tiken zu übernehmen. Allerdings können diese einen positiven Einfluss auf
die Qualität von Software und die Produktivität von Entwicklern haben:
bspw. kann Pair Programming zu korrekterem Code führen; Design Pat-
terns können die Produktivität erhöhen und Fehler reduzieren. Probleme
mit der Übernahme von Praktiken können daher Unternehmen negativ bee-
influssen.

Ein Großteil der Forschung hat sich auf die Gründe und mögliche Mod-
elle für Übernahmeprobleme im Software Engineering konzentriert. So
wurde herausgefunden, dass das Vorschreiben von Praktiken alleine de-
rartige Probleme nicht lösen kann. Lösungen sollten stattdessen andere
Faktoren miteinbeziehen, die für die Verbreitung von Ideen und Praktiken
wichtig sind: so etwa soziale Beeinflussung, Wissensmanagement, Motiva-
tion und Überzeugungsstrategien.

Diese Dissertation schlägt einen solchen Ansatz vor. Als Ergänzung
zum Vor-schreiben von Praktiken verwendet er software-basierte “überzeu-
gende” (engl.: persuasive) Interventionen, die Kreativität, Autonomie und
andere in der Softwareentwicklung wichtige Faktoren begünstigen können.
Um Organisationen beim Entwurf solcher Interventionen zu unterstützen,
bietet die Dissertation einen Katalog von Übernahme-Mustern: abstrakte
Lösungen zu Übernahmeproblemen. Ein systematischer, iterativer Prozess
unterstützt dabei, Muster auf die jeweilige Situation einer Organisation
anzuwenden. Eine Evaluierung dieses Ansatzes zeigt, dass Prozess und
Muster e�ektiv sind: für Studierende der Informatik konnte eine signifikante
Verbesserung der Übernahme von Praktiken zur Versionskontrolle gezeigt
werden.

Die Verbesserung der Übernahmen von Praktiken des Software Engi-
neering auf unterstützende und überzeugende Art kann nicht nur auf Zeit,

Kosten und Softwarequalität einen positiven Einfluss haben. Laut Forschung
sollte ein solcher Ansatz auch die Zufriedenheit und Produktivität von Mi-
tarbeitern verbessern und deren Verbleiben im Unternehmen begünstigen.

Schlagwörter: Software Engineering, Best Practice, Übernahme, Ver-
breitung von Innovationen, Motivation, Social Media, Social Software, überzeu-
gende Technologie, Zwang.

viii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 1
1.3. Scope & Assumptions . 2
1.4. Research Methods . 4
1.5. Structure . 6

2. Di�usion of Innovations 7
2.1. Elements . 7
2.2. The Innovation-Decision Process 9
2.3. Adopter Categories . 11
2.4. Attributes of Innovations 13
2.5. Di�usion Networks . 14
2.6. The Organizational Innovation Process 17
2.7. Di�usion of Innovations and Software Engineering 18
2.8. Summary . 18

3. Self-determination Theory 21
3.1. Basic Psychological Needs 21
3.2. Intrinsic & Extrinsic Motivation 22
3.3. Motivation and Software Engineering 25
3.4. Summary . 26

4. Computer-supported Cooperative Work 29
4.1. Introduction . 29
4.2. Modeling Social Cues . 33
4.3. CSCW in Software Engineering 36
4.4. Summary . 40

5. The Adoption of Software Engineering Practices 41
5.1. Adoption Problems . 41
5.2. Empirical Study: Testing on GitHub 45

ix

5.3. Empirical Study: Mutual Assessment in Social Media for
Developers . 66

5.4. Summary . 87

6. Supporting Practice Adoption in Software Engineering 89
6.1. Definitions . 89
6.2. PAIP: The Practice Adoption Improvement Process 93
6.3. Summary . 104

7. A Catalog of Adoption Patterns 105
7.1. Introduction . 105
7.2. Knowledge Stage . 112
7.3. Persuasion Stage . 115
7.4. Motivation: Overcoming the KAP-gap 118
7.5. Decision Stage . 126
7.6. Implementation Stage . 129
7.7. Supporting Adoption Patterns 131
7.8. Summary . 136

8. Quasi-Experiment: Version Control Practices in a Student Project139
8.1. Introduction . 139
8.2. An Application of PAIP . 143
8.3. Analysis . 150
8.4. Threats to Validity . 156
8.5. Conclusions . 158

9. Related Work 161
9.1. Adoption Research in Software Engineering 161
9.2. Community Design . 161
9.3. Persuasive Technology . 163
9.4. Gamification . 163
9.5. Incentive Strategies in Knowledge Management 164
9.6. Theory W . 165
9.7. Summary . 165

10.Conclusions & Outlook 167
10.1. Limitations . 167
10.2. Outlook . 168
10.3. Contributions . 169

x

A. Testing on GitHub — Coding System 171
A.1. Category: Interaction . 172
A.2. Category: Motivation . 173
A.3. Category: Problems . 175
A.4. Category: Coping . 176
A.5. Category: Impact . 178

B. Mutual Assessment — Coding System 181
B.1. Category: Interaction . 182
B.2. Category: Motivation . 186
B.3. Category: Problems . 189
B.4. Category: Impact . 193

Curriculum Vitae 199

Bibliography 201

xi

1. Introduction

The adoption of software engineering practices by members of an organiza-
tion can have a significant impact on the productivity of software developers
and the quality of the software they develop. To facilitate the adoption of
such practices, this thesis contributes a catalog of adoption patterns ex-
tracted from prior research, as well as a process that provides a systematic
procedure for applying these patterns.

This chapter introduces the addressed problem, sketches the proposed
solution, defines the scope of this thesis’ contributions, and provides an
overview of the research methods used.

1.1. Motivation

Software engineering practices, tools, and methodologies — if used cor-
rectly — can have a positive influence on the quality and costs of developed
software and on software development processes themselves. For example,
Oram and Wilson [132] present a collection of empirical evidence regarding
practices such as test-driven development, pair programming, code reviews,
modularization, and design patterns.

In practice, however, developers do not always apply these practices —
even if they are mandated by their organization and would be helpful. This
has been shown in several studies (e.g. Riemenschneider et al. [146], Hard-
grave et al. [84], Fitzgerald [61]). For software development organizations,
such developer resistance can for example lead to failure in deploying soft-
ware process improvement (SPI) initiatives [146], lessening or nullifying the
expected positive impact of such initiatives.

1.2. Approach

To mitigate developer resistance and its impacts, this thesis investigates
alternatives to prescribing the use of practices, tools, and methodologies.
To guide this e�ort, Rogers’ [149] model of the di�usion of innovations is
used as a theoretical background. Rogers shows that apart from prescribing

1

the adoption of a practice, several other strategies and factors are important
to achieve di�usion in a population — e.g., among the software developers
of an organization [149].

As Storey et al. [169] point out, social media bear potential for having
a strong impact on software development, some of which has already been
realized. Therefore, di�usion of innovations theory is augmented with re-
sults from empirical studies that investigated the influences of social media
on developers’ adoption of practices and technologies. Based on the results
of these studies and an extensive literature review in diverse fields, this
thesis contributes a process and a catalog of adoption patterns. These can
be used in organizations to improve the adoption of software engineering
practices in a persuasive, i.e., non-coercive manner. The process and the
pattern catalog are evaluated in a quasi-experiment1, showing that signif-
icant improvements in practice adoption can be achieved with relatively
simple, but systematically constructed persuasive interventions.

1.3. Scope & Assumptions

This section discusses the scope of this thesis and its assumptions.

1.3.1. Scope

Software interventions The persuasive interventions proposed by this
thesis consist of treatments that are realized as software applications. Sev-
eral other interventions can be useful for behavior change — e.g. meetings,
discussions, monetary rewards or punishments (cf. e.g. Geller et al. [70]).
However, these are out this thesis’ scope.

Persuasion Non-persuasive strategies to influence practice adoption, such
as coercion, psychological pressure, or punishment can be implemented in
software [62]. However, as Amabile and Kramer [6] show, such approaches
are suboptimal — especially for creative professions like software engineer-
ing. Therefore, this thesis is restricted to approaches that support creativity
and collaboration through persuasion, a non-coercive approach to behavior
change.

1In a quasi-experiment, the assignment of subjects to the control vs. treatment
conditions is non-random.

2

Interventions do not change practices To improve the adoption of soft-
ware engineering practices, this thesis proposes the deployment of persua-
sive interventions. The intent of these interventions is not to change the
practices themselves. Rather, they influence the interactions between de-
velopers and the interactions of developers with the practices. While other
results might be achievable by optimizing the practices themselves for adop-
tion processes, such an approach is not covered by this thesis.

Society This thesis uses research results from psychology, e.g. in the lit-
erature review that is used to derive the adoption patterns. As Henrich
et al. [85] have shown, study results in psychology often only apply to a
very small subset of the human population: individuals living in “West-
ern, Educated, Industrialized, Rich, and Democratic (WEIRD)” societies.
Therefore, the mechanisms used by the adoption patterns might not be
applicable to individuals from other societies.

1.3.2. Assumptions

Suitability of practices This thesis does not make any assumptions about
the suitability or e�ectiveness of the software engineering practices that an
organization has chosen for adoption. However, several adoption patterns
will be di�cult to apply for unsuitable or ine�ective practices, as they may
rely on, for example, communicating the value a practice creates for the
colleagues of a developer.

Co-location and distribution Social media and mechanisms associated
with it can be used for distributed software development, in which de-
veloper teams may be working in di�erent countries, time zones, and cul-
tures [100]. However, the approach presented in this thesis does not address
this distinction. Instead, it assumes that the adoption patterns may work
in distributed as well as in co-located development. This is supported by
observation like those by Bertram et al. [15]: they find that software sup-
port often associated with distributed development can be beneficial for
co-located development as well.

Organizational change Organizations provide stability for their members.
While this is beneficial in several aspects, one consequence of stability is

3

that change becomes harder [149]. This may hamper the adoption of prac-
tices and the e�orts that support adoption processes. However, this thesis
assumes that an organization has already decided to adopt a certain prac-
tice. The presented approach is therefore concerned with the individual
innovation-decision process [149].

Methodologies consist of practices Developers may resist the adoption
of individual practices as well as whole methodologies. In the context of
this thesis, it is assumed that improving the adoption of individual practices
can also improve the adoption of a methodology.

Capability This thesis assumes that individuals and organizations are ca-
pable of introducing interventions as described in later chapters, and that
individual developers are capable of applying the prescribed software en-
gineering practices correctly. The process and patterns presented in this
thesis are concerned with factors other than capability — such as persuasion
and motivation.

1.4. Research Methods

To investigate the influences of social media mechanisms on software de-
velopers, I collaborated with colleagues in two empirical studies (cf. sec-
tions 5.2 and 5.3). In both studies, we conducted exploratory research
guided by Grounded Theory [170]. Based on Creswell’s recommendations [33],
we chose di�erent mixed methods designs.

Empirical Study: Testing on GitHub Using testing as an example for a
software engineering practice, we investigated the influence of social media
— namely, the social coding site GitHub — on the adoption of practices.
In this study (cf. section 5.2), we used Grounded Theory as our research
method [170]. Grounded Theory is a method for qualitative research that
originated in sociology. It suggests an iterative approach in which qualita-
tive data is collected and analyzed in parallel. Using open coding, selective
coding, and axial coding, researchers extract common themes from their
data, relate them to each other, and create an overarching theory with one
of the themes at its core.

In this study, we started with a qualitative phase consisting of semi-
structured interviews to determine our research questions. This was fol-

4

lowed by a first questionnaire that supported narrowing our questions even
further. We then proceeded with a second round of semi-structured inter-
views, this time directly aimed at answering our more concrete research
questions. As suggested by Greiler et al. [79], we validated our qualitative
results with a second questionnaire.

Empirical Study: Mutual Assessment in Social Media for Developers In
a more general study on the influence of social media on software developers
(cf. section 5.3), we started with a set of more concrete research questions.
This allowed us to begin with a questionnaire targeted at members of two
social media sites for developers, which supplied us with first quantitative
results. We extended on those with semi-structured interviews, yielding
qualitative insights. For this qualitative phase, we again used Grounded
Theory.

Process and Patterns To construct a process (cf. chapter 6) and a catalog
of patterns to support this process (cf. chapter 7), I conducted an extensive
literature review of the e�ects social media can have on adoption processes.
As these can be found in di�erent fields such as HCI, software engineering,
psychology, and sociology, a systematic literature review as proposed by
Kitchenham [92] was not appropriate. For the same reason, a systematic
literature survey (cf. e.g. Cornelissen et al. [31]) also was not an option. To
construct the process and the patterns from the literature review’s results, I
used open and selective coding as e.g. suggested by Grounded Theory [170].

Quasi-Experiment: Version Control Practices in a Student Project To
evaluate the process and the patterns, I applied them to a student project
(cf. chapter 8). In this quasi-experiment, the control group consisted of
the reasonably similar past projects. For the treatment group, a persuasive
intervention — constructed based on the process and adoption patterns
contributed by this thesis — was deployed. In the treatment condition,
student developers committed significantly more often to version control,
and wrote more and longer commit messages.

In summary, the research presented in this thesis is based on a problem
identified in literature, empirical studies of a possible solution approach,
the construction of a concrete solution based on a literature review, and a
quasi-experiment validating this solution.

5

1.5. Structure

This thesis is structured as follows. The following three chapters pro-
vide the backgrounds for research on the Di�usion of Innovations, Self-
Determination Theory — a model of human motivation —, and computer-
supported cooperative work. Chapter 5 gives an overview of adoption chal-
lenges and solutions in software engineering, and reports on two studies
on this topic I conducted in cooperation with other researchers. The suc-
ceeding chapter describes a process for influencing practice adoption; chap-
ter 7 documents the patterns for this process that I derived from literature.
Chapter 8 reports on a quasi-experiment that shows the e�ectiveness of the
approach. Chapter 9 discusses related work, and chapter 10 concludes the
thesis and considers areas for future research.

6

2. Di�usion of Innovations

This chapter introduces the theory of the di�usion of innovations [149]. It
provides the theoretical background for this thesis. Based on this theory,
later chapters develop a solution targeted at improving the adoption of
software engineering practices.

2.1. Elements

Rogers [149] defines di�usion as follows.

Definition 1: Di�usion.
“Di�usion is the process by which an innovation is communicated

through certain channels over time among the members of a social
system.”

(cf. Rogers [149])

This section introduces the terminology used in that definition.

Definition 2: Innovation.
“An innovation is an idea, practice, or object that is perceived as new

by an individual or other unit of adoption.”
(cf. Rogers [149])

Rogers emphasizes the perception of newness — in discussing the di�usion
of innovations, it is irrelevant whether an innovation is truly novel.

Innovations are di�used through communication channels:

Definition 3: Communication Channel.
“A communication channel is the means by which messages get from

one individual to another.”
(cf. Rogers [149])

7

Many di�erent kinds of communication channels exist, and each may
have di�erent properties with regard to the di�usion of innovations through
them. Yet, first and foremost, Rogers identifies two distinct classes of chan-
nels: mass media and interpersonal channels. Mass media broadcast mes-
sages — such as news, educational information, or TV shows — from a
sender to many receivers. Conversely, interpersonal channels exist between
individuals and allow for exchanges between them that can go back and
forth.

While mass media are initially important to spread awareness knowledge
about an innovation, interpersonal networks become more important with
time as people turn to their peers for opinions about and evaluations of an
innovation.

Time, which determines the ordering of events, is also an important as-
pect of the di�usion of innovations. Di�usion is a process that unfolds over
time. Thus, time is relevant when investigating how an individual or other
unit of adoption gradually changes their internal state (e.g. knowledge or
decision to adopt) and overt behavior (actual adoption or rejection). Time
is also an important measure when categorizing adopters into di�erent cate-
gories (cf. section 2.3) or when determining an innovation’s rate of adoption
— the number of adopters for an innovation in a given period [149].

Finally, di�usion always happens within a social system.

Definition 4: Social System.
“A social system is defined as a set of interrelated units that are en-

gaged in joint problem solving to accomplish a common goal. The mem-
bers or units of a social system may be individuals, informal groups,
organizations, and/or subsystems.”

(cf. Rogers [149])

For social systems, di�usion research distinguishes between two di�er-
ent structures. The social structure influences di�usion through values,
norms, roles, and hierarchies. Furthermore, the communication structure
determines how messages may flow through the social system, e.g. by
providing communication links between individuals. Because of their influ-
ences on the di�usion process, both structures are of interest for di�usion
researchers [149].

8

2.2. The Innovation-Decision Process

The innovation-decision process describes how individuals — or other decision-
making units, such as groups or communities — adopt or reject an innova-
tion. This process is aimed at reducing the uncertainty about an innovation.
It is comprised of five steps (cf. Fig. 2.3) that do not necessarily need to
follow each other consecutively [149].

1. Knowledge 2. Persuasion 3. Decision 4. Implementation 5. Confirmation

Figure 2.1: The innovation-decision process for individuals according to
Rogers [149].

1. Knowledge: The individual becomes aware of the innovation’s exis-
tence and starts to understand how it works.
For example, a software developer might learn about test-driven de-
velopment (TDD) by reading about it in a blog post.

2. Persuasion: The individual develops an attitude towards an innova-
tion.
Through a discussion with a colleague that was triggered by the blog
post, the software developer realizes that using TDD could be bene-
ficial in her development.

3. Decision: An individual who is aware of an innovation and has formed
an attitude towards it will at some point decide whether to adopt the
innovation. This often involves a trial phase by the individual herself
or by a peer.
After the discussion with the colleague, the developer contemplating
TDD for her development tries a tutorial she finds on the Web and
then decides to start applying TDD from now on.

4. Implementation: The individual starts using the innovation. She con-
tinues learning about it and overcomes problems, further reducing the
innovation’s uncertainty.
The software developer now uses TDD in her daily work and keeps
informing herself to improve her application of TDD, for example
through exchanges with colleagues who have also adopted TDD.

9

5. Confirmation: After having implemented an innovation, an adopter
will continue to collect information that reinforces her decision. If
this leads to conflicting information, the adoption may be reversed.

The software developer will constantly monitor herself and her peers
to reinforce or refute whether adopting TDD actually does improve
the process of developing software in some way.

The passive or active consumption of awareness knowledge and how-to
knowledge, the opinions of peers, and personal trials all help a potential
adopter in this process. By gradually improving her understanding of an
innovation, she reduces the uncertainty associated with ideas perceived as
new. Each stage in this process bears the potential for the individual to
reject the innovation, e.g. by forgetting about it after the knowledge stage
or by not acting upon their positive attitude towards the innovation [149].

2.2.1. The KAP-Gap

The latter phenomenon is called the knowledge-attitude-practice gap (KAP-
gap). It describes the situation in which individuals have gained awareness
knowledge and how-to knowledge about an innovation, have formed a fa-
vorable attitude towards it, but do not act upon it. It often occurs for
preventive innovations: those which can prevent or mitigate an undesirable
future event. Because the e�ect of adopting the innovation is a “non-event”
— something not happening — the benefits of the innovation are not as
accessible as for other innovations [149]. An example for software engineer-
ing is writing documentation to prevent problems during maintenance: as
it is not clear whether there will be maintenance problems or whether the
developer will be involved in maintenance at all, she may perceive docu-
mentation as unnecessary overhead [102].

By connecting Rogers’ theory with social learning theory [9] (cf. sec-
tion 2.5.3) and self-determination theory [150] (cf. chapter 3), motivation
can be derived as one factor determining whether an individual will reject
an innovation in the KAP-gap. Bandura acknowledges that motivation is
an important part in social learning [9], without which individuals will not
reproduce the behavior they have observed. Relatedly, according to Ryan
and Deci [150], motivation is necessary to apply existing skills or learn
news ones. Therefore, this thesis assumes motivation to play a role for
overcoming the KAP-gap.

10

2.3. Adopter Categories

Based the findings of several studies, Rogers [149] uses a measure of “innova-
tiveness” to distinguish di�erent categories of adopters. Using the average
time of adoption for a population and an individual’s time of adoption,
the individual can be associated with one of the following five adopter cat-
egories. Boundaries between categories are based on standard deviations
from the average time of adoption (cf. Fig. 2.2).

Innovators

x x + sdx – sdx – 2sd

2.5%

Early
Adopters

13.5%

Early
Majority

34%

Late
Majority

34%
Laggards

16%

Figure 2.2: Rogers’ proposed categorization of adopters based on the average
time to adopt (x) and the standard deviation (sd) [149].

Rogers [149] ascribes di�erent characteristics to each adopter category:

1. Innovators: Innovators are venturesome and interested in new ideas.
They are less connected to their local peer networks, and keep more
cosmopolite relationships with other innovators that might be geo-
graphically distanced. To support their a�nity for novelty, uncer-
tainty, and risk, they need su�cient financial resources, must be able
to understand technical concepts, and need to be able to cope with
uncertainty.

Innovators play an important role in the di�usion of innovations.
Their cosmopolite relationships, especially those to other innovations,
allow them to import new ideas into their local peer networks. This
makes them gatekeepers that have control over the flow of innovations
between social systems.

2. Early Adopters: Compared to the innovators, early adopters are
oriented more towards their local peer networks. They are respected
by their peers, who often refer to them for advice and information
about an innovation.

Early adopters serve as role models for other members of a social
system. Once they have adopted an innovation, they communicate

11

their evaluation of it to their peers, who use this evaluation to reduce
their own uncertainty about an innovation. Through this process,
early adopters can support an innovation in reaching the critical mass
that enables the innovation to become adopted more widely.

3. Early Majority: A third of the adopters in a social system are in
the early majority. They adopt new ideas just before the average
member does.

While they do not lead adoption and do not serve as opinion leaders,
their interconnectedness in the social system makes them an impor-
tant link in the di�usion of innovations.

4. Late Majority: Just as the early majority, the late majority consti-
tutes a third of the adopters in a social system. They adopt new ideas
after the average member has done so. Their reasons for adoption are
often economic necessity or increasing peer pressure.

Because of their lower resources, members of the late majority are
skeptical about innovations: they need to be sure that the investment
will be worthwhile.

5. Laggards: Laggards are oriented towards the past and use it as
a reference for their decisions. They interact with peers who are
similarly traditional as themselves, isolating them from the rest of
their social system.

The laggards’ cautious adoption behavior is often based on their lim-
ited resources. Before they adopt an innovation, they need to be sure
that it will not fail.

Rogers [149] notes that these are ideal types, and that reality shows a
continuous spectrum of adopters over time. However, they are a useful
abstraction for thinking about the process of di�usion.

As the adopter categories show, an individual’s personal situation and
characteristics can influence their time of adoption. Similarly, the next
section shows how attributes of innovations themselves can determine their
rate of adoption.

12

2.4. Attributes of Innovations

Rogers identifies five attributes of innovations that have a strong influence
on whether and how fast an innovation is adopted. He notes that these
need not be actual attributes of an innovation — it is only important how
a potential adopter perceives the innovation [149].

1. Relative Advantage: The perceived relative advantage of an in-
novation is the degree to which it is perceived as improving on a
previous innovation. This can manifest itself as higher profitability
or an increase in social status, for example. Preventive innovations
— those whose e�ects may not be immediately visible, or may never
materialize because their purpose is to prevent an undesirable event
— are perceived to have a very low relative advantage. Incentives
(e.g. money or free samples) can be used to increase the perceived
relative advantage of an innovation. However, adoptions motivated
by incentives may be less sustainable, with adopters possibly reject-
ing the innovation when the incentive ceases to be available. Relative
advantage is positively related to an innovation’s rate of adoption.

2. Compatibility: The perceived compatibility of an innovation de-
scribes how consistent it is with regard to an individual’s values, ex-
periences, and needs. The degree of compatibility determines the
change in behavior required to adopt an innovation. Thus, instead of
introducing an incompatible innovation into a social system, adoption
can be easier when the innovation is broken up into several more com-
patible innovations that can be adopted in sequence — each requiring
only a minor behavior change. Compatibility is positively related to
an innovation’s rate of adoption.

3. Complexity: The perceived complexity of an innovation describes
how di�cult it seems to comprehend and use the innovation. A high
degree of complexity can be a strong barrier against adoption. Com-
plexity is negatively related to an innovation’s rate of adoption.

4. Trialability: The perceived trialability of an innovation is the degree
to which it can be tried on a probationary basis. A personal trial
of an innovation is an e�ective way to reduce uncertainty about an
innovation. As such, trialability is positively related to an innovation’s
rate of adoption.

13

5. Observability: The perceived observability of an innovation is the
degree to which others can observe the results of an innovation. Ob-
serving a peer can be a proxy for a trial of an innovation. Observ-
ability is positively related to an innovation’s rate of adoption.

These five attributes have been found to determine about half of the
variance of adoption rates [149].

2.5. Di�usion Networks

The adoption rate is also influenced by the social system in which an inno-
vation di�uses. Rogers mentions weak ties, opinion leaders, social learning,
and critical mass as important concepts that help understand the di�usion
of innovations through social networks [149].

As has been alluded to in the section on adopter categories, many in-
dividuals are influenced by peers when deciding whether or not to adopt
an innovation. Peers from distant social networks introduce innovators to
new ideas. This gatekeeping process gives the relatively locally oriented
early adopters access to these innovations. Acting as opinion leaders, they
demonstrate the advantages of an innovation to the early majority. Through
peer pressure and out of economic necessity, the late majority and laggards
finally also adopt the innovation. The di�usion process of an innovation is
driven by interpersonal communication.

2.5.1. Weak Ties

Research has shown that with high probability, an individual’s close ties
are similar to the individual (cf. a discussion on homophily by McPherson
et al. [119]). These peers, in turn, are peers to one another as well. This
gives rise to mostly isolated, close-knit cliques. Consequently, new ideas
are unlikely to enter such a social system [149].

However, some individuals in such groups will have ties to individuals
from other communities. Because they belong to other peer groups, such
connections are often weaker. Yet, these weak ties [78] provide the means
for seeding peer networks with innovations. They act as brokers that bridge
communities and allow new ideas to flow from one peer group to another.

Thus, while most ties between individuals have a low potential for the
exchange of new ideas, the rare and distant weak ties can act as impact-

14

ful channels in the di�usion of innovations. Close, strong ties are more
important when it comes to interpersonal influence [149].

2.5.2. Opinion Leaders

For illustrative purposes, Rogers’ theory divides individuals into opinion
leaders and their followers, acknowledging that in reality, this distinction
is not as clear-cut [149].

Opinion leaders have exposure to mass media and are cosmopolite. They
participate more in their social systems than their followers and have a
higher socioeconomic status. Often, opinion leaders are more innovative
than their followers — but this depends on whether the social system favors
change [149].

These characteristics give opinion leaders immense influence when it
comes to di�using innovations in a social system. Because their opinions
are highly respected, their followers often find them more credible than
external influences such as mass media or change agents. For this reason,
change agents often seek opinion leaders in a social system to help them
di�use an innovation. Rogers cites several studies that have shown that
this approach is more e�ective than alternatives — like, e.g., simply trying
to communicate an innovation to all members of a social system [149].

The observability of an innovation is an important attribute in this re-
gard, as demonstrations by opinion leaders can be impressive “trials by
proxy” for a potential adopter [149].

2.5.3. Social Learning Theory

Bandura [9] introduced social learning theory to explain how individuals
learn from each other’s behavior by observations. This process is called
social modeling: based on observing peers, individuals enact similar — not
identical — behavior. Instead of imitating others, they adapt an observed
behavior to their own situation. If the original behavior leads to an ob-
servable reward for the original performer, others can take this as a cue to
start modeling their own behavior after the original. Social modeling can
happen through interpersonal networks as well as through public displays,
for example through mass media. The steps Bandura regards as necessary
for social learning to happen include attention (the ability to observe a be-
havior), retention (remembering a behavior), reproduction (i.e., ability to
perform a behavior), and motivation.

15

Social learning and the di�usion of innovations are distinct theories. Yet,
they are related in that they both provide a model of behavior change based
on communication with others. Both theories regard information exchange
an essential factor in behavior change, and both acknowledge ties between
individuals as an important facilitator of such exchanges [149].

2.5.4. Critical Mass

Critical mass for an innovation is the point at which its di�usion becomes
self-sustaining and does not need to be supported by change agents or
similar forces anymore [149]. It is especially important for interactive in-
novations: Rogers defines these as innovations through which an exchange
between individuals is facilitated, and which allow individuals to switch
roles. Examples are many communications technologies, like the telephone,
fax, email, or social media sites. They have in common that with each
additional adoption, the value of adopting the innovation increases for all
past and future adopters [149].

Since potential adopters are often aware of the fact that the innovation
will be more useful if others adopt it, they monitor the adoption behavior of
others. Individuals will be more likely to adopt if they perceive that critical
mass has been reached, as this increases the innovation’s value. Relatedly,
opinion leaders are often part of the critical mass, as they are watched by
their followers [149].

Conversely, if an individual believes that others are discontinuing their
adoption of an interactive innovation, they will also be more likely to stop
using it: discontinuance for such an innovation is equivalent to a decrease
in value. This can create cascades of discontinuance that will eventually
lead to the innovation becoming abandoned [149].

Rogers [149] proposes four strategies to support an innovation in reaching
critical mass: targeting highly-respected individuals for initial adoption;
shaping the perceptions of whether critical mass will be reached soon or
has already been reached; introducing the innovation first to especially
innovative groups, such as R&D departments; and providing incentives for
early adoption until critical mass is reached.

16

2.6. The Organizational Innovation Process

This thesis is concerned with influencing individual developers in their
adoption of software engineering practices. However, as the approach pre-
sented in this thesis assumes that developers work in the context of an
organization, this section briefly discusses the innovation process for orga-
nizations (cf. Fig. 2.3). According to Rogers [149], it is comprised of the
following steps.

1. Agenda-Setting 2. Matching 3. Redefining /
Restructuring 4. Clarifying 5. Routinizing

Decision
1. Initiation 2. Implementation

Figure 2.3: The innovation process for organizations according to Rogers [149].

1. Agenda-Setting: The organization identifies and prioritizes needs
and problems that could be addressed by adopting an innovation.

2. Matching: The problem identified in the previous stage is matched
with an innovation that could solve it.

3. Redefining / Restructuring: The organization customizes the in-
novation according to its own structure, culture, and needs.

4. Clarifying: Use of the innovation is starting to di�use in the organi-
zation. The meaning of the innovation becomes clearer for the orga-
nization’s members, and they start forming a common understanding
of it.

5. Routinizing: The innovation loses its distinct quality: it is now part
of the organization.

This thesis assumes that an organization has already decided about
adopting a certain practice and that the problem lies with the adoption of
individual developers. Therefore, only the clarifying and routinizing stages
from the above process will be relevant.

17

2.7. Di�usion of Innovations and Software Engineering

Iivari [87] discusses the apparent non-use of computer-aided software engi-
neering (CASE) tools in organizations. Whereas reported e�ects of CASE
tool usage on software quality were beneficial, the adoption of such tools
was found to be low. For example, the author cites a study showing that
70% of CASE tools deployed in organizations were not used after one year.
Iivari uses Rogers’ di�usion of innovations theory [149] to examine this
phenomenon. He interprets his findings to show that CASE usage could be
increased by stronger management support, encouragement, and by making
it mandatory. This would initiate a self-sustaining cycle in which perceived
relative advantage would increase as developers gain experience with CASE
tools, which would further improve adoption.

Iivari’s discussion supports this thesis’ assumption that some mandating
of behavior supports the adoption of software engineering innovations, but
that perceived attributes of innovations such as relative advantage can be
leveraged to improve the adoption of software engineering innovations even
further.

A workshop series on adoption-centric software engineering (ACSE, c.f.
e.g. Balzer et al. [8]) that was successfully organized over several years
highlights the importance of addressing adoption problems in software en-
gineering research.

2.8. Summary

During the process of di�usion, an innovation is communicated through
communication channels among the members of a social system. The
innovation-decision process describes the stages an individual can go through
while contemplating the adoption of an innovation: after having gained
knowledge about it, the individual forms an opinion about the innovation
and decides whether or not to adopt it. The individual then starts using the
innovation and further reduces the remaining uncertainty by practice and
learning. When the innovation has been adopted, the individual continues
to monitor whether adoption still makes sense for her.

Adopters as well as attributes of innovations can be divided into cate-
gories established by di�usion research. Their characteristics can provide
an estimate of the probability of adoption in a given situation. Social net-
works have a large influence on the adoption process.

18

As section 2.2.1 has argued, motivation can be an important factor when
an individual considers an innovation for adoption. The next chapter dis-
cusses Self-determination Theory — a model of human motivation. This
will clarify challenges and possible solutions to improving the adoption for
software engineering practices.

19

3. Self-determination Theory

Self-determination Theory (SDT) is a macro theory of human motivation.
As described in the previous chapter, developer motivation can have an
impact on their completion of the innovation-decision process — namely in
the KAP-gap, between the persuasion and decision stages. This chapter
provides an overview of SDT to guide the design of persuasive interven-
tions for improving the adoption of software engineering practices in later
chapters.

Research in psychology has created many models of human motivation.
SDT is a model that has been confirmed by current research and is accepted
in the psychology community (cf. e.g. Deci and Ryan [44]). Gagné and
Deci [68] have shown that SDT also applies to work settings, making it
suitable for supporting software engineers.

3.1. Basic Psychological Needs

According to Ryan and Deci [151], the base assumption of SDT is that
human beings “have natural, innate, and constructive tendencies to develop
an ever more elaborated and unified sense of self.” That is, when su�ciently
supported, people will strive “to learn; extend themselves; invest e�ort;
master new skills; and apply their talents responsibly.” [150]

However, when missing the necessary support, individuals can become
fragmented, passive, reactive, or alienated [151]. Ryan and Deci acknowl-
edge three fundamental psychological needs that need to be satisfied for an
individual to thrive.

1. Competence: Competence refers to individuals feeling e�ective in
their interactions with their environments and experience exercising
and expressing their capacities. The competence need is related to
seeking attainable challenges that match and extend one’s capabili-
ties [151].

2. Relatedness: Relatedness refers to individuals feeling “connected
to others, to caring for and being cared for by those others”, and

21

to a feeling of belonging [151]. It is related to feeling secure in the
company of one’s peers.

3. Autonomy: Autonomy “refers to being the perceived origin or source
of one’s own behavior.” [151] Contrary to intuition, the autonomy need
is not related to independence. Rather, it refers to individuals’ need
of feeling in control of their environment and their actions.

These three basic needs can be supported by various strategies. For ex-
ample, encountering challenges that are both attainable, yet stretch an indi-
vidual’s capabilities to a new level, can support perceived competence [151].
Unexpected positive feedback on these challenges also supports perceived
competence [43], while negative feedback can thwart it, leading to lowered
intrinsic motivation [184]. Csíkszentmihályi’s concept of the flow experi-
ence is related to the autonomy and competence needs [35]. The autonomy
need can be supported by giving individuals choice in their tasks [198].

3.2. Intrinsic & Extrinsic Motivation

Self-determination Theory distinguishes between two di�erent kinds of mo-
tivation: intrinsic and extrinsic motivation. Individuals that are intrin-
sically motivated to carry out a task do so because of the enjoyment or
fulfillment that are, in their perception, inherent to the task. Conversely,
extrinsic motivation is external to the task itself: individuals perform the
task to reach another goal, such as obtaining a reward, avoiding punish-
ment, or gaining in social status.

3.2.1. Intrinsic Motivation

To explain intrinsic motivation, Self-determination Theory contains Cogni-
tive Evaluation Theory (CET) as a sub-theory [151]. CET does not specify
what causes intrinsic motivation — rather, Ryan and Deci view it as hav-
ing evolved in humans. Instead, CET is concerned with factors that can
support or inhibit an individual’s natural potential for intrinsic motivation.

The most important supporting factors for intrinsic motivation are per-
ceived autonomy and competence. Both must be present for intrinsic moti-
vation to thrive [150]. Facilitators for perceived competence are, for exam-
ple, optimal challenges, positive performance feedback, and freedom from

22

demeaning evaluations [150]. At the same time, the individual must expe-
rience her behavior as self-determined, i.e., experience autonomy. Related-
ness can further support intrinsic motivations [150].

The sustainability of engaging in an activity, productivity, and the well-
being of individuals are associated with motivations that are more intrin-
sic [150]. This especially applies to creative activities — as opposed to
routine work, for which extrinsic motivators such as rewards can provide
legitimate support. Whereas intrinsic motivation can lead to higher and
more sustained engagement with a creative activity, extrinsic motivation
can facilitate engagement in routine tasks that are not intrinsically reward-
ing, or push individuals to try out a behavior they have not performed
before.

3.2.2. Extrinsic Motivation and Internalization

For understanding extrinsic motivation, Self-determination Theory provides
another sub-theory: Organismic Integration Theory (OIT) [150].

Extrinsic motivators — such as rewards or deadlines — can motivate
an individual to perform a task she is not intrinsically motivated to do.
However, if the individual is intrinsically motivated for the task, extrinsic
motivators can diminish that existing motivation. When rewards, threats,
directives, deadlines, pressured evaluations, or imposed goals are present for
a task, the person ceases performing it for its own sake and loses her sense of
autonomy. Expected extrinsic motivators undermine intrinsic motivation.
Thus, if the extrinsic motivator is then removed, the individual might stop
performing the behavior [150].

However, not all extrinsic motivators are the same: OIT recognizes a
continuum that distinguishes extrinsic motivations based on how internal-
ized the motivation is for the individual and on the degree of perceived
autonomy [150] (cf. Fig. 3.1).

The di�erent nuances of motivation (Fig. 3.1) have been shown to have
di�erent influences on individuals [150]:

1. Amotivation: Individuals who are amotivated do not act or merely
act without intent. It can be caused by “not valuing an activity,
not feeling competent to do it, or not expecting it to yield a desired
outcome.” [150]

23

Amotivation Extrinsic
Motivation

Intrinsic
Motivation

Non-Regulation Intrinsic
Regulation

External
Regulation

Introjected
Regulation

Identified
Regulation

Integrated
Regulation

Behavior Nonself-determined Self-determined

Motivation

Regulatory
Styles

Regulatory
Processes

Nonintentional,
Nonvalueing,
Incompetence,
Lack of Control

Compliance,
External
Rewards and
Punishments

Self-control,
Ego-involvement,
Internal Rewards
and Punishments

Personal
Importance,
Conscious
Valuing

Congruence,
Awareness,
Synthesis
with self

Interest,
Enjoyment,
Inherent
Satisfaction

Figure 3.1: The di�erent types of motivation as according to Self-determination
Theory [150].

A bored software tester mindlessly clicking through user interface
dialogs and possibly making mistakes doing is an example for amoti-
vated behavior.

2. Extrinsic motivation, external regulation: Behaviors that are
externally regulated are performed “to satisfy an external demand”
or because of the possibility of a reward. Individuals experience it as
controlled or alienated [150].

When a software developer is writing her lines of code only because
she will earn 10 Euros for each 100 lines, she is extrinsically motivated
with external regulation.

3. Extrinsic motivation, introjected regulation: Introjected be-
haviors “are performed to avoid guilt or anxiety or to attain ego en-
hancements such as pride.” The behavior is not experienced as part
of oneself, but as externally influenced [150].

For example, a software developer who is working on a task only to
avoid disappointing her team is extrinsically motivated with intro-
jected regulation.

4. Extrinsic motivation, identified regulation: For identified be-
haviors, the action is “accepted or owned as personally important”.
The individual consciously values the goal or regulation [150].

An example for identified regulation is a software developer who is
fixing a bug not because she enjoys doing it, but because she acknowl-
edges that it is necessary to move the project forward.

24

5. Extrinsic motivation, integrated regulation: If identified regu-
lators become part of the self — that is, the individual has evaluated
them and was able to align them with her own values — they are
called integrated [150].
When a software developer is performing an unattractive task because
she knows that practicing this task will make her a better developer,
she is extrinsically motivated with integrated regulation.

6. Intrinsic motivation: An individual performs an activity only for
the sake of the activity itself, feeling autonomous and self-determined [150].

Activities that are more internalized are associated with greater initia-
tive, better coping with failure, less anxiety, more enjoyment, more e�ort,
and better performance [150]. Arguably, these are desirable qualities for
creative work like software development. Therefore, to support software
engineers’ motivation to help them overcome the KAP-gap, facilitating the
internalization of extrinsic motivations is desirable.

Influences from others — e.g. colleagues or superiors — are the main
reason individuals engage in activities they are not intrinsically motivated
for. Supporting perceived relatedness, therefore, is a crucial element when
facilitating the internalization of extrinsic motivators [150]. Similar find-
ings hold for feelings of competence and autonomy. People are more likely
to adopt a behavior when they feel capable of performing it [150], and sup-
porting autonomy by providing individuals a sense of choice and freedom
from external pressures “allows individuals to actively transform values into
their own.” [150]

Chapters 6 and 7 will incorporate these insights when developing a pro-
cess and adoption patterns that can improve the adoption of software engi-
neering practices — including by helping developers overcome the KAP-gap
with motivational support.

3.3. Motivation and Software Engineering

The influence of motivation on software development has long been ac-
knowledged in software engineering research and practice. However, em-
pirical research is rare. This section gives examples for some mentions and
investigations of related phenomena.

In his 1981 book Software Engineering Economics, Barry Boehm [16]
discusses the influence of developer motivation on productivity. He advises

25

managers of software development projects to especially support the growth
needs of their developers, as “for many software people, a good deal of
self-actualization is involved with becoming a better software professional.”
(p. 670) Boehm also warns of some simple strategies that seem to increase
productivity, but do so only in the short term. For example, he criticizes
reducing software development tasks into small, meaningless pieces, or using
planning and control metrics — extrinsic motivators — for performance-
appraisal (pp. 645, 638). Boehm also mentions the detrimental e�ect of low
motivation on employee retention.

In their 1987 book Peopleware, DeMarco and Lister [46] discuss several
issues of motivation in software engineering. The authors criticize the use of
extrinsic motivators (“management [means] kicking ass”) as being infeasible
for the software engineering profession, as such approaches are unlikely to
produce creative, innovative work and will unlikely be sustainable in the
long run. Instead, DeMarco and Lister argue that software engineers “love
their work” and that extrinsic motivation from management is “almost
always superfluous”.

A recent study by Sach et al. [153] supports that software engineering
itself is a motivating task. In a subsequent investigation, Sach and Pe-
tre [152] find support for the beneficial impact of positive feedback and the
detrimental e�ect of negative feedback, a theme mentioned earlier in this
chapter.

Beecham et al. [12] conducted a systematic literature review on motiva-
tion in software engineering. They find that software engineers are more
interested in growth (i.e., challenges and learning) than in achievements
(e.g. promotions) and that they value independence. According the au-
thors, motivated engineers tend to stay in their jobs longer and are more
productive than de-motivated ones.

Finally, McConnell [118] points out that since motivation is a soft factor
that is hard to quantify, software development organizations often ignore
it, concentrating on more measurable aspects they can influence.

3.4. Summary

SDT as a model of human motivation may not contain the whole truth
about what motivates human beings. However, it is a useful model and,
according to research, works well in explaining behavior and creating solu-
tions. Therefore, it is also appropriate for guiding the design of software

26

engineering practices and supporting tools to put them more in line with
what motivates developers — helping them overcome the KAP-gap.

As the previous chapter has shown, interpersonal networks play an im-
portant role in the di�usion of innovations. The next chapter discusses how
these can be supported in software. Mechanisms from such applications can
then be used to design persuasive interventions that improve the adoption
of software engineering practices.

27

4. Computer-supported Cooperative Work

Software developers use computers not only for writing programs — they
also use them to communicate and collaborate with one another. Software
development is an inherently social activity: collaboration and communi-
cation activities can have a powerful impact on the success of software
projects (cf. e.g. Stapel and Schneider [166]). Computer-support for these
activities is not restricted to distributed projects, in which necessity re-
quires computer-mediated communication. Instead, even co-located teams
use software that supports group communication and collaboration in their
daily work [15].

This thesis develops adoption patterns — abstract solutions to adop-
tion problems — to improve the adoption of software engineering practices
(cf. chapter 7). Many of these adoption patterns leverage mechanisms that
improve collaboration and communication of software developers. To enable
a better understanding of how and why these patterns work, this chapter
provides a summary of some relevant topics from the field of computer-
supported cooperative work (CSCW).

4.1. Introduction

The first mention of using a computer for human interaction was in 1945,
in Vannevar Bush’s essay As We May Think [23]. The author describes
a device he calls the memex. The memex provides access to a large ency-
clopedia that humans can influence and shape, allowing them to exchange
data with another. Another milestone publication is an article by Licklider
and Taylor [104] from 1968, in which the authors describe how a computer
can be used for communication.

CSCW is a line of research concerned with how social interactions —
communication, collaboration, or coordination — are influenced by tech-
nical systems. In the 1970s, it became clear that computers were needed
to support collaboration. However, research in computer science and soft-
ware engineering was not yet prepared to answer what the requirements for
such a system should be. Knowing how to build software was not enough

29

— some understanding of how people interact and collaborate was miss-
ing. In this situation, Irene Greif and Paul Cashman organized a CSCW
workshop, which would coin the term CSCW for a discipline that works
in understanding such requirements [80]. Whereas research in this area is
referred to as CSCW, the technology and systems that implement CSCW
concepts are often called groupware [80].

4.1.1. Groupware

Ellis et al. [54] define groupware as follows:

Definition 5: Groupware.
“Computer-based systems that support groups of people engaged in

a common task (or goal) and that provide an interface to a shared
environment” are called groupware.

(cf. [54])

According to the authors, the goal of groupware is to support communi-
cation, collaboration, and coordination for groups of people.

The above definition of groupware does not provide a clear-cut di�er-
entiator. Instead, groupware is regarded as a continuum along multiple
dimensions, two of which are the common task and the shared workspace.
These dimensions can be used to classify an application on the groupware
spectrum. For example, because of missing environmental cues, email is
considered to be low on the groupware spectrum. Conversely, a collabora-
tive text editor is high on the groupware spectrum, as it supports a group
achieving a common task: creating, editing, or reviewing a document [54].

Grudin [80] mentions the organization as the largest entity that could be
the subject of CSCW, respectively groupware. However, since his defini-
tion, another type of systems has emerged that is also relevant to CSCW
research: social media, which often encompass whole communities and are
not focused on supporting their users to achieve a common task.

4.1.2. Social Media

To allow for a definition of social media, definition 6 first defines what media
are.

30

Definition 6: Media.
Media are storage and transmission channels or tools used to store

and deliver information or data.
(cf. Merriam-Webster Online Dictionary [1])

Social media, then, are those media that allow exchanges between large
numbers of users (cf. definition 7).

Definition 7: Social Media.
Social Media are media that allow large numbers of users to share

content with one another.

Modern social media are often implemented as web sites, but not always1.
Kietzmann et al. [90] provide an overview of the functional building

blocks that can be found in social media, noting that not every social media
site will contain every building block:

1. Identity lets users disclose information about themselves to other
users.

2. Conversations support communication between users of the social
medium.

3. Sharing allows users to exchange, distribute, and receive content.

4. Presence enables users to know how accessible another users is —
e.g. with regard to their geographical location or the task they are
currently working on.

5. Relationships allow users to create connections between themselves
that are persisted in the social medium.

6. Reputation lets users estimate others’ and their own standing among
their peers.

7. Groups allow users to form sub-communities.

1E.g. users of Instagram primarily access the service through an application for
smartphones http://instagr.am

31

http://instagr.am

Social media are available for a variety of purposes. For example, content
repositories allow users to exchange a certain type of content — e.g. music,
videos, or photographs — with one another. Flickr2 is an example for a
content repository for photographs. Microblogs, such as Twitter3, let users
post short texts in a public space. Question & answer (Q&A) sites (e.g.
Stack Overflow4) let users post and answer questions, sometimes focused on
a specific topic. Social network sites (SNS) like Facebook5 are focused on
letting users create relationships between each other (cf. definition 8). So-
cial coding sites such as GitHub6 are a combination of content repositories
and social network sites targeted at software developers.

Social network sites are particular, as their defining features can be added
to any other social media site. Ellison and boyd [55] define SNS as follows.

Definition 8: Social Network Site.
“A social network site is a networked communication platform in

which participants 1) have uniquely identifiable profiles that consist of
user-supplied content, content provided by other users, and/or system-
provided data; 2) can publicly articulate connections that can be viewed
and traversed by others; and 3) can consume, produce, and/or interact
with streams of user-generated content provided by their connections on
the site.”

(cf. Ellison and boyd [55])

Thus, from the examples mentioned before, GitHub is a social network
site: members of the site have a profile; they can follow other users and
inspect whom another user follows; and they are provided with a stream
of updates from users and projects they follow on the site. Whereas Stack
Overflow, the Q&A site for software developers, does not allow persistent
connections between users. Thus, Stack Overflow is not a social network
site.

2
http://flickr.com

3
https://twitter.com

4
http://stackoverflow.com

5
http://facebook.com

6
http://github.com

32

http://flickr.com
https://twitter.com
http://stackoverflow.com
http://facebook.com
http://github.com

4.2. Modeling Social Cues

When creating groupware, social media, or related systems, it is important
to appropriately support social processes [80]. One set of approaches to
this is concerned with modeling social cues — signals that are taken for
granted in interactions that take place in the physical world, but are not
available by default when interacting through computer systems. For ex-
ample, colleagues who are co-located in an o�ce room and are working on
reorganizing the chapters of a book by physically rearranging hard copies
will notice when one of them picks up a chapter. This allows them to react,
for example by preventing the colleague to do so because they think the
change would be inappropriate. This section presents research areas that
are concerned with making such social cues explicit in computer systems.

4.2.1. Awareness

In supporting communication, collaboration, and coordination, awareness
support has become an important tool. Dourish and Bellotti [51] first
defined it as “an understanding of the activities of others, which provides
a context for your own activity.” Today, CSCW distinguishes the following
di�erent types of awareness [105]:

• Group awareness informs members of a collaborating team about
what other members are working on and what their current status is.

• Workspace awareness refers to information about a team’s shared
workspace, often presented in a spatial manner. This can include
artifacts, their editing histories, and the availability of team members.

• Contextual awareness can be provided in addition: based on the
current context, it filters the available awareness information to con-
tain only that which is relevant to the user in their current context
(e.g. their location, current task, or most closely worked with col-
leagues).

• Peripheral awareness — similar to contextual awareness — refers
not to an additional kind of awareness information, but to a way
of displaying existing information. A system supporting peripheral
awareness displays awareness information not as a central entity, but
in the periphery of a user’s workspace, allowing them to concentrate

33

on their current task, but providing a space to switch to for awareness
information.

Many modern awareness systems automatically collect and publish aware-
ness information about an individual. Therefore, a recurring issue is the
amount of awareness information a system should provide. Too much infor-
mation could overwhelm users, but too little information might cease to be
useful. For example, Wang et al. [190] as well as Shah and Marchionini [161]
find that this is a trade-o� that must be balanced for each application and
kind of task. The authors propose methods to appropriately tailor aware-
ness information.

4.2.2. Social Translucence

To choose which social cues to model in a system and how to represent
them, Erickson et al. [57, 56] argue that the physical world should be the
reference. This is where humans have evolved their capabilities to interpret
social signals, therefore computer systems should be designed so that these
capabilities can assist users of computer systems as well. This approach is
called social translucence, referring to making social cues visible, but hiding
others that would disturb the users’ goals.

Erickson et al. [57, 56] distinguish three aspects in their approach: vis-
ibility makes social cues explicit; this creates awareness; and awareness,
in turn, creates accountability. Relating to the example about rearranging
book chapters above, making the act of picking up a book chapter chapter
visible would make colleagues aware of it. The colleague picking up the
chapter would know that her colleagues are aware of it, creating account-
ability.

Social Translucence Over Social Networks

Social translucence was created with the physical world as the ideal space
after which to model computer system. However, according to Gilbert [71],
this approach breaks down in social media and on social network sites.
These systems are structured by their users’ social networks — the con-
nections between them — which have no equivalent in the physical world.

34

Even though this allows these systems to scale7, it also creates problems
that cannot easily be addressed by social translucence.

Gilbert provides an extension of social translucence that allows address-
ing such problems even when social networks are used to structure group
communication. His approach, for now, is based on a consideration of triads
in social networks — relationships between three actors, in this case as a
directed graph. By listing the possible configurations and examining them
with regard to one of the three traits from social translucence (visibility;
awareness; accountability), Gilbert is able to discover design problems that
have not yet been addressed [71].

4.2.3. Social Transparency

As another approach to address the shortcomings of social translucence
with regard to social media, Stuart et al. [171] created their social trans-
parency framework. It is a theoretical framework that can guide the design
and analysis of software systems through which individuals communicate,
collaborate, or coordinate. The authors identify three dimensions of trans-
parency that can be used to increase or decrease the perceived degree of
transparency of a system. Changes in each of the dimensions can a�ect the
social processes supported by a system in several ways.

• Identity Transparency is the degree to which the identity of the
participants of an information exchange is visible to other partici-
pants. Users might be completely anonymous, identifiable only by
nicknames, or by their real names. Reputation signals may help in
identifying the credibility of a participant.

For example, software developers use identity cues present in social
media to assess each other, informing their decisions of whether to
initiate a collaboration or not [162].

• Content Transparency refers to “the visibility of the origin and
history of actions taken on information.” [171] That is, for content in
a software system, it describes the degree to which the recipient can
determine the source of the content, which states it was in before,
and which users were responsible for these states.

7e.g., Twitter had 100 million active users in September 2011: http://blog.twitter.

com/2011/09/one-hundred-million-voices.html; Facebook had 1 billion active users as
of October 2012: http://newsroom.fb.com/Key-Facts

35

http://blog.twitter.com/2011/09/one-hundred-million-voices.html
http://blog.twitter.com/2011/09/one-hundred-million-voices.html
http://newsroom.fb.com/Key-Facts

For example, the social coding site GitHub displays all prior versions
of an artifact and connects them to the users responsible for them.

• Interaction Transparency is the degree to which information ex-
changes between a sender and a receiver can be observed by a third
party.

For example, Twitter users are able to passively follow exchanges
between other users they follow.

Di�erent degrees of transparency in these three dimensions can have di-
verse e�ects. For example, users that have to use their real names in a
software system will feel more accountable for their actions, but might
also be more reluctant to post controversial opinions. Receivers of content
will interpret information di�erently based on where it came from, so the
presence or absence of reputation signals will influence the credibility of a
source.

In addition to such first order e�ects, second order e�ects — i.e., e�ects of
e�ects — complicate the targeted application of transparency. For example,
if the popularity of information and information sources is transparent,
a community of users may tend to prefer only popular content, thereby
silencing niche opinions.

Among these e�ects, it has been shown that the motivations and behav-
iors of a system’s users can be influenced positively. For example, users of
social network sites are more likely to engage in a behavior if they have
observed their peers exhibiting the behavior before [22, 26]. Publicly vis-
ible extrinsic rewards such as badges or public ranking lists can motivate
developers to try out new practices and technologies [162]. The process and
several of the adoption patterns proposed by this thesis (cf. chapters 6 and
7) provide a systematic way to leverage such e�ects of social transparency
to improve the adoption of software engineering practices.

4.3. CSCW in Software Engineering

This section discusses existing approaches from software engineering that
utilize the modeling of social cues in collaboration systems to support soft-
ware development.

36

4.3.1. Groupware

Several features known from groupware and mentioned above are present in
collaboration tools for software engineering. This section highlights some
examples.

Awareness support in distributed development Steinmacher et al. [168]
conducted a systematic literature review about awareness support for dis-
tributed software development. They find that collaboration tools support-
ing awareness features are becoming more numerous. Coordination is sup-
ported by the most tools, a communication focus however is less prominent.
Workspace awareness elements play a central role in distributed software
development.

Awareness through dashboards and feeds In an industrial study by Treude
et al. [180], the authors investigate the use of dashboards and feeds in
software development. They find that these tools increase awareness in
projects. Dashboards support individual as well as collective processes.
Feeds are rather used to track work at a small scale.

Trust in distributed teams Because of cultural di�erences, distributed
teams encounter challenges in building up trust. Even though it can build
up in the co-located teams of a distributed project’s sites, trust between
sites can be hard to achieve. According to Mikawa et al. [121], informal
conversations and spontaneous brainstorming are some key factors that
support building up trust, but are not supported by the often task-driven
collaboration tools. For example, developers will only initiate video con-
ferences to achieve certain goals, leaving no room for informal talk that
could support inter-site trust. As was described in previous sections, such
informal communication can be facilitated by modeling social cues.

Collaboration tools for distributed development Lanubile et al. [100]
provide an overview of collaboration tools used in global software engineer-
ing. While they mention the important part social media can play in facil-
itating informal communication, they also present several more traditional
collaboration tools. The authors discuss web-based tools for requirements
engineering, software design, and testing — demonstrating that collabora-
tion tools exist for many areas of software engineering.

37

Stakeholder involvement for requirements engineering Lohmann et al. [109]
created a Web platform to support requirements engineering activities.
Namely, their system implements several features known from social media
to increase stakeholders’ engagement in requirements engineering. As it
is targeted at the earlier stages of requirements gathering and discussion,
the system uses social media features such as commenting and rating to
especially foster informal exchanges.

Conflict detection and notifications for coordination Brun et al. [21]
present a tool that can detect possible collaboration conflicts in version
control repositories. When the tool detects a new commit from another
developer that could create a conflict with the work of the tool’s user, it
provides a warning. This workspace awareness enables software developers
to avoid conflicts in using version control.

Peripheral visualizations for coordination Lanza et al. [101] present a set
of visualization that provide awareness information to developers. Similar
to the approach by Brun et al. [21], their tool enables developers to become
aware of possible merge conflicts in a shared codebase. However, instead of
technically detecting possible conflicts, Lanza et al. provide visualizations
that are present in developers’ peripheral workspace at all times. These
visualizations allow developers to realize when someone else is working on
the same code, and according to a qualitative study are e�ective in prompt-
ing discussion between developers — thereby avoiding complicated merge
conflicts.

Expert discovery based on source code involvement Guzzi and Begel [81]
present CARES, a collaboration tool integrated into the IDE that helps
software developers find and communicate with experts on the source code
they are currently working on. The authors find that their tool makes it
easier and faster for developers to find and contact others who might be able
to help them with a problem. This was especially the case when developers
did not know whom they should contact.

Communication and knowledge management in issue trackers Bertram
et al. [15] investigated the use of issue trackers in co-located software devel-
opment. According to the authors, issue trackers are used to communicate
and coordinate work with involvement from diverse stakeholders, such as

38

customers, project managers, quality assurance, and the developers them-
selves. Even though the primary use case for an issue tracker seems to be
tracking defects and providing prioritized task lists, Bertram et al. find
that they serve as important repositories of organizational knowledge.

4.3.2. Social Media

Social media have changed how developers create software. Software engi-
neers connect with, provide help to, collaborate with, and learn from one
another with unprecedented ease [169]. Relatedly, Begel et al. [13] show
that social media can support team processes in software engineering. This
section gives examples of social media use in software engineering.

Collaborative documentation Wikis [39] and blogs [134, 133] were among
the first social media that were used by software developers. They are
mostly used for requirements engineering, documentation, and to commu-
nicate high-level concepts [112, 3, 169]. Blogs and Q&A sites facilitate
collaborate learning and augment o�cial API documentation [136].

Question & answer sites Stack Overflow is a question & answer site tar-
geted at software developers. Members can post questions, provide an-
swers and comments, and rate both questions and answers. The site uses
gamification concepts — “the use of game design elements in non-game
contexts” [50] — to encourage and reward participation. Remarkably, a
question asked on the site has a median answer time of 11 minutes [116].

Social coding sites GitHub and similar sites provide source code hosting
with version control for software developers. However, these sites are also
social network sites (cf. definition 8) and provide a high degree of social
transparency [38]. Members are able to easily find out who they are inter-
acting with, whom everyone else is interacting with, and who has interacted
with which artifacts. This transparency influences the behavior of software
developers [38]. For specific software engineering practices, the social trans-
parency found on GitHub can have a large impact: Pham et al. [140] found
that for testing, GitHub can help communicating requirements for tests
and can prompt as well as motivate developers to provide tests with their
contributions.

39

Developer profile aggregators Using all the data that is available about
an individual online, sites like Masterbranch and Coderwall create aggre-
gate profiles for software developers. These sites use gamification [50] to
motivate developers to try out new technologies and allow them to discover
new contacts and technologies [162].

4.4. Summary

To support social processes, designers of collaboration systems attempt to
model social cues. Awareness and social translucence are useful approaches
for systems restricted to a certain number of users, but break down when
social networks are used to structure applications — as is often the case in
social media, for example. Social transparency is a theoretical framework
for designing and analyzing such systems.

Many tools and services supporting social processes are already used in
software engineering. The following chapter will first discuss challenges in
the adoption of software engineering practices, and then show how support
for social processes and other idiosyncrasies of groupware and social media
systems can be used to address these challenges.

40

5. The Adoption of
Software Engineering Practices

This chapter first shows that the adoption of software engineering prac-
tices is problematic, and that even mandating their use does not solve the
problem. Instead, the introduction of obligatory practices can be met with
resistance from developers.

The second part of this chapter reports on two studies I conducted on
the use of social media by software developers. Together with colleagues,
I found that social media provides several mechanisms that can support
the di�usion and adoption of software engineering practices. This insight
lays the groundwork for the contribution this thesis makes to improving
adoption: using research results from social media, HCI, sociology, and
psychology enables change agents to address practice adoption issues in a
non-coercive manner, and can be achieved more systematically than cur-
rently practiced.

5.1. Adoption Problems

This section discusses practices in software engineering: their advantages,
problems with their adoption, as well as consequences of and reasons for
these adoption problems.

5.1.1. The Value of Software Engineering Practices

Software engineering practices, their supporting tools, and methodologies
that prescribe more encompassing processes are used to improve the quality
of software as well as the quality of the processes used to develop software.
This can result in important competitive advantages for companies that are
involved with creating software.

Several low-level practices have long been recommended in software en-
gineering, for example using a version control system and writing readable
code [77]. Even the concrete embodiments of these seemingly simple prac-
tices have been and still are subject to debate: the correct way to commit to

41

git-based repositories is being debated on the Web1; Vermeulen et al. [188]
give advice on how to write good code comments.

An example for a practice on a higher level of abstraction is test-driven
development (TDD). Turhan et al. [181] note that, according to empirical
studies, TDD can improve the quality of tests. Similarly, Tichy [179] shows
that design patterns [69] improve development especially in maintenance.
Employing design patterns can improve developers’ productivity, reduce
defects, and improve communication and knowledge di�usion between col-
laborating developers.

Other practices give advice on how developers should collaborate. For
example, pair programming can lead to improvements in code correct-
ness [192]. Cohen [29] notes that code reviews — in which other developers
systematically examine one programmer’s code for defects — are the fastest
known practice for finding bugs.

Because of their positive influences on software quality, practices like
TDD, design patterns, and code reviews can have a significant impact on
the reliability, dependability, and security of software.

Yet more abstract than these team-oriented practices, processes and pro-
cess improvement models give advice to whole organizations on how to
structure their software development activities. In their systematic litera-
ture review on software process improvement (SPI) initiatives, Lavallée and
Robillard [102] find that adopting mature development processes can reduce
the significance of variations in developer capabilities. Without a formal
process, the negative impact that developers of low proficiency could have
on the final product would be much more severe than with such a process
in place.

While researchers and practitioners do encounter disagreement and in-
conclusive evidence at times, empirical studies have shown that there can
be concrete benefits to several software engineering practices.

5.1.2. Resistance to Practice Adoption

To achieve these benefits, practices have to be applied by developers. How-
ever, several studies show that organizations that try to introduce a prac-
tice or a whole methodology may encounter resistance from their employ-
ees [102, 174, 27, 84, 146, 61, 60]. The adoption of software engineering

1See, e.g., http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.

html or http://sethrobertson.github.com/GitBestPractices/

42

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
http://sethrobertson.github.com/GitBestPractices/

practices, tools, and overarching methodologies has been the subject of
scholarly debate for over 20 years [94].

• In their systematic literature review, Lavallée and Robillard [102]
show that software process improvement initiatives that introduce
new or modify existing practices are sometimes resisted by devel-
opers. As reasons for resistance, the authors for example report “a
perceived increase in overhead”, “fear that data collection will be used
for personnel evaluation”, and a perception of uselessness for certain
practices.

• Hardgrave et al. [84] survey members of the IT department of a large
company regarding their adoption of a methodology. They report
that negative peer pressure can discourage developers from adopting.

• In a study of several companies of di�erent sizes and from di�erent
industries, Fitzgerald [60] documents several incidents of methodolo-
gies that are “not followed rigorously” or whose implementation is
“very patchy.” For example, he describes how less experienced de-
velopers first follow a methodology and then become less formal in
applying it once they have gained some experience. Fitzgerald finds
that adherence to methodologies is negatively correlated with expe-
rience: experienced developers “know that they have to clean up the
dirt later.”

Any newly introduced practice will demand at least a certain change
in behavior from developers, some even require drastic changes [27, 84].
Changing one’s behavior, however, can be challenging — especially when
the benefits are not immediate (cf. e.g. Rogers [149] on preventive in-
novations) or when the practice’s usefulness is not visible for develop-
ers [102, 84, 146]. For some practices, their advantages might only be rele-
vant for the organization, but not for the individual developers — e.g., those
required for certifications or imposed by government policies [61]. As a
consequence, organizations facing such resistance often cannot deploy their
chosen practices or methodologies or at least not to full extent [84, 146].

5.1.3. Mandating Behavior

To counter resistance, organizations regularly mandate the application of
certain practices and methodologies. Hardgrave et al. [84] studied the fac-
tors that determined whether developers would adopt a methodology. The

43

authors find that mandating a behavior does indeed have an influence on
adoption, but that several other factors can have an even greater influence.
They conclude that an organizational mandate “is not su�cient to guar-
antee use of the methodology in a sustained manner.” Riemenschneider et
al. [146] arrive at a similar conclusion.

While mandatory adoption certainly helps in getting developers to adopt
a practice, other determinants are still undervalued. Among these, the
following were found to have the most impact.

• Perceived usefulness, perceived compatibility, and social pressure can
have a stronger influence on developers than an organizational man-
date [84, 146].

• Perceived developer involvement with and control over process changes
as well as a transparent communication of such changes have a posi-
tive influence on adoption [182, 130, 139].

As Riemenschneider et al. [146] argue, alternative approaches that aug-
ment mandating behavior might alleviate adoption problems with software
engineering practices and methodologies. The authors propose to use per-
suasive communication strategies to influence social pressure e�ects and
developer motivation. As the rest of this chapter will show, social media
and related technologies bear potential for supporting such a strategy.

5.1.4. Summary

This section has shown that while software engineering practices and method-
ologies are useful instruments to improve software products and the soft-
ware development process, organizations can struggle with achieving suf-
ficient adoption among their employees. Even though industry regularly
mandates the adoption of practices, other factors are even more important
— such as social pressure, perceived usefulness, and perceived compatibil-
ity. The remaining sections of this chapter present two empirical studies in
which I, together with colleagues, investigated the use of social media by
software developers and how they can influence these additional factors.

44

5.2. Empirical Study: Testing on GitHub

This section reports on an investigation of GitHub2, the social coding site.
Together with collaborators, I examined the influence of the social cod-
ing site’s social transparency on the adoption and communication of soft-
ware engineering practices — using testing as an example for such a prac-
tice [140]. Most of the developers we encountered work in organizations and
engage in open source development either in their spare time or as part of
their employment. As such, they are relevant subjects for investigating
measures that could support the di�usion of software engineering practices
in organizations.

Dabbish et al. [38] already explored whether and in which areas develop-
ers on GitHub are influenced by the site’s peculiarities. One area in which
they found e�ects was software testing. Our study investigates this in more
depth. This report shows that even though developers in open source may
also encounter practice adoption problems with their collaborators, social
media can create useful e�ects and social dynamics to support practice
adoption.

The next section introduces some necessary terminology used in Git and
GitHub, after which our study is reported and discussed.

5.2.1. Terminology: Git and GitHub

Git3 is a distributed version control system (DVCS). Each contributor may
clone a remote repository to create a local copy of the whole repository
and may then commit changes to this local repository. Changes can be
pushed or pulled to and from remote repositories. Often, there is one remote
repository combining the participants’ commits.

To avoid having to grant every contributor full commit rights to that
central repository, developers often use a process coined forking. Contrib-
utors create clones of the central repository and, eventually, if they want
a commit to be included in the central repository, they issue a pull re-
quest: a notification to the project owner — the manager(s) of the central
repository — that new commits are available on the developer’s fork. The
project owner may then decide themselves whether to pull those changes to
the main repository. This decouples outside contributors from the central

2
http://github.com

3
http://git-scm.org

45

http://github.com
http://git-scm.org

repository. For simplicity, we will refer to the project owner in the singular
form, even though several developers might have that role for a project.

The social coding site GitHub4 provides hosting of remote Git reposito-
ries and supports the repository interactions in a Web-based user interface.
Pull requests can directly be commented on, thus facilitating discussions.
GitHub integrates tools that are often used in software projects, such as an
issue tracker or a wiki. Because of this easy accessibility and a streamlined
contributing process, projects hosted on GitHub are accessible to a large
number of potential collaborators.

Each member maintains a profile site, may follow the activities of other
members, and may view the contact lists of other members — making
GitHub a social network site as defined by Ellison and boyd [55]. Thus,
project owners and contributing team members are easily reachable for
potential external contributors.

5.2.2. Study Design

To explore how testing is carried out on social coding sites and how in-
creased social transparency impacts the testing behavior of software devel-
opers engaged in those projects, we used an approach based on Grounded
Theory (GT) [170]. For the purposes of our study, we focused on two groups
of people: (1) project owners who receive pull requests and (2) contributors
who send them.

Research Questions

We designed a set of research questions to better understand how testing
practices evolve based on the interaction between contributors and project
owners on social coding sites. First, we focused on identifying the main
steps and variations of the contribution process and how decisions are made
with regard to testing. This leads to our first research question:

RQ1: What is the contribution process with regard to testing on social
coding sites?
While investigating the contribution process on GitHub, it became clear

that contributions were assessed by project owners. Furthermore, we found
di�erent motivations for implementing quality assurance measures specific
to interaction on social coding sites. We refined our first research question
into two subquestions to accommodate this.

4
http://github.com

46

http://github.com

RQ1.1: How do project owners assess incoming contributions from con-
tributors?
RQ1.2: What are the internal and external motivations for engaging in
testing e�orts on social coding sites?
As reported by Stuart et al. [171], social transparency may have hard

to anticipate second order e�ects in addition to the possibly intended first
order e�ects. In our study, we wanted to find out more about the issues
that might arise as a result of those e�ects. As such, our second research
question is:

RQ2: What challenges and risks related to testing arise from engaging
in projects on social coding sites?
In face of such challenges and risks, project owners and contributors

might have to evolve and adapt their contribution process. For example,
project owners might have to advise contributors on how to conform to
project guidelines. Our third research question focuses on the actions taken
by each group of actors for overcoming such issues:

RQ3: How do developers cope with those challenges and risks?

Finally, the increased social transparency on social coding sites creates
distinct modes of interaction between project collaborators. Understanding
these modes of interaction can help guiding approaches that attempt to
improve the adoption of testing practices, such as the one presented in this
thesis. This leads to our last research question:

RQ4: What impact does the participation on social coding projects have
on testing practices?

Procedure

Grounded Theory [170] emphasizes a continuous data collection process
interlaced with periodic pauses for analysis. As such, we conducted our
study in three phases.

First, we focused on understanding which testing-related norms and con-
ventions exist on GitHub. For our investigation, we obtained 16,000 email
addresses of recently active users by querying the GitHub Archive5. From
this pool, we invited 50 users to semi-structured interviews, and another 50
users by randomly choosing a member from each of the 50 most success-
ful GitHub teams as listed on the Coderwall6 leaderboard. This sampling

5
http://www.githubarchive.org

6
http://coderwall.com

47

http://www.githubarchive.org
http://coderwall.com

strategy resulted in a diverse population: highly experienced as well as
regular users of GitHub.

Of these 100 users, 10 from the former sample and 3 from the latter
sample enrolled. Each participant was interviewed by a member of our re-
search team via voice call. Interviews lasted approximately 20 minutes and
the audio was recorded. We asked the participants to outline the testing
process in one of their public projects on GitHub. Preliminary findings in-
dicated that projects featuring extensive collaboration between developers
would demand more elaborate testing approaches. We also learned that
most decisions regarding testing were made when pull requests were sent
and received, i.e., when people had to coordinate and negotiate their coop-
eration.

In the second phase of our research, we defined our target population to
be active users who used the collaboration features of GitHub. From our
address pool, we invited 1,000 GitHub users at random to take our first
questionnaire: 500 at first and again 500 after 6 days. In total, 158 users
responded, of which 74 left usable contact information. The questionnaire
responses allowed us to distinguish between users that had been collabora-
tively active — they had either sent a pull request or forked a project —
and their approaches for testing contributions. We invited all 62 of those 74
who matched our criteria for another round of semi-structured interviews.
20 users enrolled.

In these interviews, we inquired about participants’ testing practices and
values. We had prior answers to these questions from the questionnaire and
used the interviews to explore such situations in detail, allowing us to better
understand the contribution process with a focus on testing behavior and
practices. For example, we asked interviewees how they handled incoming
pull requests and whether they had any kind of quality assurance measures
related to this process. Then, we inquired about their motivations for
assuring quality and the challenges they face when contributing to other
projects. As a result of our second phase, we were able to identify five
themes that stood out.

1. The fork and pull request mechanisms, social network features, and
integration of numerous tools result in a GitHub-specific process for
sending and receiving contributions.

2. GitHub makes it easier to access a public repository, start working on
it, handle contributions, and discuss them with contributors. GitHub

48

tools and social features lower the barriers for engagement in software
projects.

3. Public projects and profiles on GitHub have high exposure to many
potential contributors and users. This helps with, for example, dis-
covering edge cases.

4. GitHub integrates many tools into the project context and centralizes
many interactions and notifications among project participants.

5. GitHub provides increased social transparency that allows its users
to see the identity, actions, and communications between users, a
phenomenon that was previously reported on by Dabbish et al. [38].

In the last phase, a final questionnaire was sent to 4,000 random GitHub
users for a quantitative validation of our findings. Of these users, 569
responded. The results of this phase can be found in section 5.2.4.

Data Analysis

We alternated periods of data collection with analysis in order to build
up our theory. At the end of each data collection phase, we transcribed
the recorded interviews and open coded them. This resulted in 172 codes
that we consolidated to 45 codes through discussions among all authors.
At the end of our second phase, we engaged in axial coding in order to
find higher level conceptual themes that would help us in answering our
research questions7. In the last phase of our research, core themes of our
theory were formed into statements and validated through a final question-
naire (cf. section 5.2.4). Participants were asked to agree or disagree with
statements using a Likert scale. For each question, the mean value for the
given set of answers was calculated, as well as its variance and the number
of given answers to that question in total. For questions that required the
participant to choose an answer in a set of pre-given answers, the count for
each answer was calculated and related to the total number of answers to
that question.

Participants

Overall, we interviewed 33 people, among them software developers, testers,
and software architects. Nearly half of them were using GitHub for pro-

7The coding system can be found in appendix A.

49

fessional work (19); the other half (14) used GitHub for private projects.
Our population comprised of developers employed in a software company
(24), self-employed (3), and unemployed developers (2). 4 interviewees were
a�liated with universities and mostly engaged in noncommercial projects.

20 participants of our second interview phase estimated the number of
total contributors to their projects. Numbers of contributors were diverse:
12 projects with up to ten contributors, two projects with up to one hun-
dred contributors and six projects with over one hundred contributors. We
denote these interviewees from the second phase with FI. Randomly chosen
interviewees from the first interview round are denoted with R, Coderwall
leaderboard members are denoted with L.

5.2.3. Findings

Interaction on GitHub With Regard to Testing

This section reports on our findings regarding the contribution process
on GitHub and how project owners assess pull requests from contributors
(RQ 1.1).

In the course of our interviews, several steps of the contribution pro-
cess on GitHub emerged. After receiving a pull request, the first step
that project owners conducted was to manually review the contribution
and assess it by di�erent aspects. After this review, they merged the pull
request into a testing branch and resolved conflicts manually. Superficial
adjustments like code style corrections or comments were added based on
preference. If a test suite existed, project owners ran it to check whether
or not this contribution passed tests. This heightened confidence in the
contribution. Finally, the contribution was merged into the main branch of
the project.

We found many factors that were taken into consideration by project own-
ers when assessing contributions. For instance, project owners reported to
treat incoming pull requests di�erently depending on whether they trusted
the contributing developer. Pull requests from unknown developers would
undergo a more thorough assessment, while contributions from trusted de-
velopers would be merged right away. “if it’s someone I trust, who’s worked
on the project a lot, then I don’t do that. [...] if it’s someone who hasn’t
spent a lot of time on the project, I’ll try and do that.” [L48]

The perceived size of the changes highly influenced the project owner’s
need for tests. If the project owner believed to have quickly understood the

50

changes’ impact, they demanded no tests from the contributor. This was
often the case when only some lines of code had been changed.

Additionally, project owners distinguished between two types of con-
tributions: contributions that introduced a new feature or contributions
that changed existing code, such as bug fixes. The former were requested
to include tests, while the latter caused project owners to check whether
or not the changed code was already covered by existing tests. If so, no
further tests were demanded. “if you really write a new feature, then it
makes more sense to add tests for that, but if you just do a little change in
a code chunk that is already there then I don’t expect that the person writes
the test for that.” [FI19]

The target of the changes was considered as well. Changes to core
functionality caused a demand for tests. However, if the estimated e�ort
for creating automated tests was regarded as infeasible, this demand was
waived. Often, such tests would require a cumbersome setup of test envi-
ronments (such as di�erent operating systems). Project owners were aware
that contributors acted voluntarily and were unfunded in most cases.

Motivations for Demanding and Delivering Tests

This section presents our findings regarding project owners’ motivations for
demanding tests and contributors’ motivations for providing them (RQ 1.2).

Project owners’ reasons for demanding tested contributions were mani-
fold. Maintaining clean and well documented code reduced the subsequent
support e�ort, according to one project owner. Some project owners per-
ceived tests as a form of documentation of how to use the contributed
feature. Another project owner requested contributors to provide test cases
of how they needed the software to behave, so he could merge these into
the existing test suite for future regression testing. In this case, tests were
used for communicating requirements.

An external motivator was the impression of acting as a role model
when working on a testing-related project. Several users reported to feel
obliged to perform proper quality assurance for projects with a domain
related to testing — e.g. a testing framework or a continuous integration
server.

In interviews with contributors, di�erent motivations for including tests
in pull request on one’s own initiative emerged. Some interviewees said
they explicitly added tests that highlight the value of their contribution

51

to the project owner: these tests failed with the old version of the software
in question, but passed when the contribution was applied.

The existence and prominent placement of tests gave contributors
the impression of informal project guidelines; thus they felt obligated to add
their own tests. “[There were no guidelines set up], not so much formally,
but it was pretty clear how it was supposed to be tested and there was already
an existing spec file [...] with a pretty substantial list of tests” [FI17]

Similar to a project owner perceiving oneself as a role model when work-
ing on a testing-related project, contributors felt an implicit demand
for tested pull requests in such projects. In other instances, this obligation
also resulted from customs rooted in the community of the technology used.
Often, Ruby developers tested their contribution by default.

Challenges and Risks

This section discusses the challenges and risks we found to arise when en-
gaging with projects on GitHub (RQ 2).

Interviewees saw an urgent need for automatic tests in their projects.
This need was felt very strongly, as there are a lot of contributors on GitHub
which are often only marginally engaged, i.e., there is a large group of
developers in the periphery. Therefore, a lot of contributions need to be
managed which interviewees reported could not be done using manual tests
— simply for reasons of scale. “a lot of people are contributing to [the
project] and quality control is becoming more and more important to us.
Automated testing is the only way to get that” [FI7] To achieve automated
testing, project owners were in many cases looking for tests when they
received pull requests from contributors (cf. the previous section).

Because there is a constant flux of contributors, and developers new
to a project are not yet accustomed to its testing culture, they have to learn
it anew. This takes time and e�ort. If a project fails to communicate
testing culture e�ciently and e�ectively, or sets barriers that are too
high for first-time contributors, it can struggle to create such a culture. For
example, if new contributors cannot easily find existing tests in a project,
they will not be able to write any of their own for their contributions.
“When I first started contributing to [the project], they did not actually
have a test suite which made shipping them tests fairly di�cult” [FI20]

Several project owners reported that their projects were struggling with
creating the required testing culture. The pull requests they received

52

would often not include any tests by default. One issue they saw was the
voluntary nature of open source contributions: they could not simply
require well-tested contributions. Developers who had sent a valuable pull
request might be alienated if project owners rejected their contributions due
to a lack of tests. “We have a project, where we don’t have the culture, it
is di�cult and people are volunteers, we can’t just enforce it on the project.
You have to try to incubate it into the project.” [FI7]

Another reason why creating a robust testing culture is so di�cult could
be the lack of experience on the side of the contributors. As one developer
from a commercial project said, “We have a lot of people ramping up to
the team every time. So, we have a big rotation. So new people don’t
understand what is a quick build, what is the regression, what is isolated,
... and they don’t understand how to write tests for each of those suites.”
[L4]

Two of GitHub’s greatest strengths — low barriers to contribution, com-
bined with tight integration of related tools and services — are related
to another challenge that interviewees mentioned. In terms of testing,
there are no integrated tools provided by GitHub that might lower some
testing-related barriers, e.g. for setting up a server for continuous integra-
tion. Even though this is starting to be supported by Travis CI8, this was
not yet commonly used among the interviewed population. One intervie-
wee even mentioned that “github its such an easy-to-use-tool that it makes
writing unit tests seem like extra time for most people.” [R16]

Coping with Challenges

In this section, we report how interviewees coped with the testing-related
challenges on GitHub (RQ 3).

As described in the previous section, scalability reasons drive project
owners towards automated tests. However, manually merging each pull
request into a testing branch and running regression tests with a test suite
of automated tests remained a tedious task. Some interviewees resorted to
an automated continuous integration (CI) service, such as Travis CI
or Jenkins. Such a service frees the project owner of several manual steps:
when a pull requests is received, a program merges the contribution into a
testing branch, runs the existing test suite, and notifies the project owner
as well as the contributor of the results.

8
http://travis-ci.org

53

http://travis-ci.org

Project owners developed di�erent strategies to establish a common un-
derstanding of testing requirements and handling untested pull requests.
Due to the voluntary nature of GitHub (c.f. previous section), some project
owners simply resorted to writing tests themselves or thankfully re-
questing — instead of demanding — further tests, as this leaves the con-
tributor the option to decline.

Lowering the barriers and making it easier to provide tests was
another strategy, for example by introducing a testing framework with a
suitable explanation of its usage. Other project owners provided easy ac-
cess to learning resources and actively supported contributors who
showed di�culties in writing tests: pointing contributors to tutorials, suit-
able examples in an existing test suite, or actively teaching them. This was
beneficial as contributors were convinced of the need for tests and included
tests on their own in subsequent pull requests. “[...] I can point them to one
of the existing tests. «Check this one, it is really similar to what you need»,
and in most cases it’s enough. Sometimes, [...] I do Skype conferences with
screen sharing where I can explain, show.” [FI4]

A passive strategy for communication testing requirements was to make
it more obvious that testing was indeed desired by giving the impression
that testing was customary in one’s project. Some interviewees said that
they tried to lead by example and tried to make testing visible in the
project, hoping to engage contributors in testing. Another strategy was
to display testing signals. For example, every project using Travis CI
may add a badge to its profile page (cf. Fig. 5.1). This informs a potential
contributor that continuous integration is regularly performed. “if you see
that image, it immediately rings the bell that there is continuous integration
in this project, and as such, there is some kind of automated testing.” [FI6]

build status passing

Figure 5.1: The Travis CI badge that projects may add to their GitHub profile
page, signifying the status of the last build.

Impact of Social Coding Sites on Testing Practices

This section investigates the impact of engaging with a social coding site
on testing practices (RQ 4).

54

During our research, we encountered di�erent levels of lowering the e�ort
for testing. One interviewee suggested that in his perception, projects using
BDD and concentrating on testing primarily the main use cases provided
these low barriers to entry. This allowed those projects to deliver results
very fast, which impressed other developers. Those projects were also very
good at communicating their culture in social media, e.g. via blog posts
advocating their testing culture. This combination, the interviewee said,
would lead to the described behavior being adopted at a fast rate and thus
spreading through GitHub. He saw this development critically however, as
possibly important edge cases were ignored until they became apparent.

A more extreme case of lowering the barrier for contributions was simply
to defer testing to a later stage of the project. An interviewee said that
in his experience, younger projects needed to gain traction in the present.
Obtaining external contributions was regarded to be more important than
quality assurance measures. However, such projects would need to pay back
this accumulated technical debt in the future.

Interviewees told us that e�ectively communicating a project’s test-
ing culture would lead to contributors adopting that culture more rapidly
and in greater numbers. We spoke to several developers who had experi-
ences in multiple projects with di�erent communication strategies. Accord-
ing to them, better communication of testing culture leads to more pull
requests containing tests, and therefore to projects that were tested better.
Testing guidelines and actively communicating to contributors what
kind of tests were required helped getting more contributors to provide
tests with their pull requests. Providing guidelines on contributing or dedi-
cated testing tutorials was reported to remove uncertainties in contributors
about how to participate correctly. This way, the barrier of having to ask
was removed. One interviewee expressed that knowing a project’s testing
culture and adhering to it would make him and his peers feel proud, further
helping the project’s testing culture to be adopted. However, the reverse
was also mentioned: if a project did not communicate anything about its
norms and requirements regarding testing, new contributors would simply
assume that no tests had to be written and consequently submit pull
requests not containing any.

Some interviewees mentioned that testing culture — and communicating
it — could even be ingrained not only in a single project, but in a whole
infrastructure community (c.f. section 5.2.3). According to these inter-

55

viewees, in the Ruby community it was taken for granted that blog posts,
screencasts, and tweets from popular developers often talked about testing
practices that were regarded as proper in that community. This is a form of
communicating a testing culture — in this case however, in a much larger
realm than that of one or more GitHub projects.

Interviewees reported several examples where direct exchanges on GitHub
helped di�using testing culture. For example, one project owner reported
that his project started using the Travis CI service when it received a pull
request that added a Travis CI configuration file. “I received a Travis CI
config [in a pull request]. I did not know this service before and someone
send me a config for Travis and this is how I came to use it” [FI19]

Travis CI, in turn, also arranges for low barriers and easy communi-
cation of testing culture. As described in section 5.2.3, the Travis CI badge
is perceived as a signal that communicates the use of certain practices.

However, employing a continuous integration service with an extensive
test suite may create a false sense of security: one interviewee reported
to use the positive result of running his existing test suite as a su�cient
confirmation of a contribution’s correctness. He usually simply merged
such pull requests without requesting any additional tests specific to these
contributions.

A key instrument for project owners wishing to create and nurture their
project’s testing culture was to provide existing tests and a testing infras-
tructure that was easy to set up (c.f. section 5.2.3). Interviewees reported
this to lower the barrier to accommodate to the project’s culture. They
would just need to fork the project, execute a shell command, and have
the existing tests running. Interviewees took this as an opportunity to run
regression tests, thus trying to make sure that their contribution did not
break anything. This heightened their confidence in the correctness of their
own code and lowered the barrier of contributing. Some interviewees also
said that just having a test suite would communicate certain values
regarding testing, helping them understand the project’s testing culture,
norms, and conventions. Providing publicly available tests brought by
another advantage: contributors heavily used existing tests as a source for
education and examples for their own test cases. “there were some tests sur-
rounding some quite similar functionality in the source, so I basically copied
and modified these tests to test the functionality that I added.” [FI20]

56

One recurring theme was that a better communication of testing culture
and low barriers in a project promote exploration and experimenta-
tion for new contributors. Interviewees claimed that this, in turn, often
leads to developers becoming more familiar with a project’s testing culture,
making it easier for them to provide their own tests. For example, a project
with a CI server that provided fast feedback on tests was said to support
experimentation — after all, problems would be easily visible, giving ex-
perimenting developers more confidence. Some interviewees mentioned that
experimentation was supported not only by a project’s deliberate e�orts,
but also by the chosen programming language and the available libraries.

Interviewees claimed that the number of volunteer contributions increased
since moving their projects to GitHub. They attributed this to the low bar-
riers to entry and the resulting exposure to a larger number of developers.
An employee of a company that develops open and closed source projects
told us that many GitHub contributors find bugs, provide tests, and send
them bug fixes. This, he claimed, enabled the company’s paid developers
to concentrate on larger issues, such as creating new features.

To a greater extent, interviewees reported that the public nature of soft-
ware development on GitHub leads to an improvement of testing practices.
Some of them were companies that used the exemplary testing practices
in their public projects as an advertisement for the high quality of their
development services. Indeed, one employee of such a company confided
that testing was less important in the company’s internal projects, as they
did not serve as such advertisements.

We heard similar reports from open source projects not backed by com-
panies. Core members of such projects were concerned about the project’s
reputation — how the project was perceived by the community. They be-
lieved that proper testing would lead to higher quality code, which in turn
would be received better by others. “we need to have a more substantial
testing framework because it’s [...] a significant indicator of code quality
in the community. If you don’t have good tests then people start to suspect
that your code may not be any good either.” [FI17]

On the side of the contributors, one interviewee reported that having
contributed to a high-profile project in which tests are mandatory would
help him find work. Indeed, that was his only reason for contributing.

Our findings show that several mechanisms and processes used on GitHub
may help projects become better tested. Project owners help new contrib-

57

utors get acquainted with a project’s culture and make it easy for them to
get up and running technically. However, this does not only a�ect regular
contributors that can be productive faster. Drive-by commits — as an
interviewee called them — are small changes that do not require a prolonged
engagement with a project, yet provide some value for it. Developers pro-
viding such changes would not always be actively interested in a project,
but might have stumbled upon it when browsing GitHub. Then, when they
had found, for example, a spelling error or a missing translation, they would
make a quick correction and forget the project again. This might lead to
GitHub having a very long tail of very many very small contributions.

5.2.4. Validation of our Findings

In the previous section, we presented findings gathered by conducting in-
terviews with 33 users of GitHub. This section presents the most striking
results of our final questionnaire that we used to validate core statements of
our findings. Of 4,000 random GitHub users, 569 completed this question-
naire. Our results are summarized in Table 5.1. PO denotes statements
about project owners, C about contributors. For each question, we pre-
sented the participant with a Likert scale: the value of 1 represents “I do
not agree at all” and 5 means “I strongly agree.”

The questionnaire required the participant to take both the perspective
of a project owner and a contributor. 39% of our participants would receive
pull requests at least a few times per week (daily: 16%) and 27% send pull
requests at least a few times per week (daily: 6%).

Even though several interviewees mentioned voluntarism as a hindering
factor, the questionnaire did not validate this (PO1). Personal traits such
as modesty and humility of the requester as well as value given to the
contribution may be influencing factors.

Similarly, most of the participants did not agree to feel a need for au-
tomation (PO2). However, as some interviewees mentioned, this need may
depend on the size and popularity of the project in question. As popularity
grows, the amount of incoming pull requests increases. As both samples
were randomly invited, but ultimately self-selected, variations in popula-
tions might attribute for this dissonance.

Interpreting results to statements PO3 and PO4 in conjunction to state-
ments C2, C3, and C4 creates an interesting image. Project owners agree
that providing tests in one’s project lowers the support e�ort regarding

58

Statement Question Results

PO1:Voluntarism
hinders demand of
tests.

I have the feeling that I am not in
position to demand tests from a
contributor as he or she is
contributing on a voluntary basis.

A: 2,21
V: 1,44
N: 464

PO2: Amount of
incoming pull requests
demands for
automation.

The amount of incoming pull
requests is so big that I can only
assure their quality by using
automated tests.

A: 2,32
V: 1,57
N: 453

PO3: Existing tests
support contributors
in writing their own
tests.

When I have tests in my project,
contributors need less help in
writing tests.

A: 4,09
V: 0,91
N: 457

PO4: Existing tests
facilitate more
incoming pull requests
that are tested.

As a consequence of providing
tests in my project, more pull
requests include tests.

A: 3,64
V: 1,12
N: 452

C1: Low barrier
commit mechanism
facilitates
Drive-By-Commits.

Since it is so easy to send a pull
request, I contribute more changes
that I would not have engaged in
otherwise.

A: 3,98
V: 1,33
N: 496

C2: Existing tests
make contributor feel
obligated to add tests.

When I see that there are tests in
a project, I will also include tests
in my pull request.

A: 4,09
V: 1,06
N: 499

C3: Existing tests are
a source of education
for contributors.

Existing tests help me in
understanding how to test in a
specific project.

A: 4,52
V: 0,61
N: 495

C4: Contributors use
existing tests as a
basis for new tests.

I use existing tests as a basis for
my own tests: I copy and paste
them and adjust them accordingly.

A: 3,94
V: 1,06
N: 496

Table 5.1.: Questionnaire results. A: average value; V: variance; N: number of
answers.

59

testing by contributors (PO3). Appropriately, contributors heavily rely on
existing test cases when creating their own. They use these to learn how
testing is done in a specific project (C3) and, lastly, even copy existing tests
and use them as a basis for new tests (C4).

With tests in place, contributors feel obligated to add their own tests and
seem to comply with this implicit demand (C2). Yet, project owners do not
seem to see a meaningful relation between providing tests and the amount
of incoming pull requests that include tests (PO4). Project owners possibly
overlook this connection between the existence of a publicly accessible test
suite and the test behavior of contributors. For further insights on this,
however, more in-depth research is needed.

5.2.5. Discussion

This section relates our work to previous research and discusses its potential
impact on the software development industry, open source development,
and research. We connect our findings with research in Communities of
Practice and the di�usion of innovations. In doing so, we distinguish be-
tween processes occurring inside of projects — intra-project — and those
spanning multiple projects, i.e., inter-project processes.

Creating a Shared Understanding

Lave and Wenger [103] coined the term Community of Practice (CoP) for
groups of individuals that work on similar problems and exchange knowl-
edge about good practices and proven solutions with each other. They
mention legitimate peripheral participation as a central phenomenon when
describing how new members of the CoP join and, through learning the
community’s norms, become more and more involved with it. Initially,
novices merely observe practices passively before starting to take on simple
and increasingly complex tasks. New members are said to be situated in
the community’s periphery, while established members are part of the core.
As shown by Crowston et al. [34], these processes can apply to open source
software development as well.

Intra-project Processes Inside of individual projects, we found that new
contributors start o� with first observing how pull requests are handled and
discussed, and what good commits and tests look like. This is supported
by the high social transparency found on GitHub.

60

When they are ready to submit their own pull requests, they have already
learned quite a lot about the project’s testing culture. However, they are
often assisted further by the low barriers many projects on GitHub strive to
provide to potential contributors. Examples for this are existing tests that
can be simply copied and modified, as well as the fact that several project
owners told us that they strive to provide testing infrastructure that is
easy to set up. This is again supported by test automation integrated with
GitHub itself, such as Travis CI.

This increased level of support for peripheral contributors seemingly cre-
ates very large peripheries of contributors for projects, as touched upon in
some of our interviews. Consequently, some of the mechanisms we found
may be used solely for managing peripheries of this greater size. Because
of the exploratory nature of this work, we were not yet able to gain deeper
insights about the properties of such projects. Future research will need to
investigate the problems created by projects with such compositions and
how project members manage these challenges.

Drive-by commits — simple commits that leave their creators rather un-
involved with the project and that can be created with very little project-
specific knowledge — are a departure from the model of the peripheral
member that gradually gets more involved with a community. We believe
that more research is needed to help us understand the motivations and
processes surrounding this phenomenon better.

Inter-project Processes In addition to these phenomenons related to in-
dividual projects, some interviewees told us about how testing culture func-
tions for communities that span multiple disconnected projects. Most of
the time, these would use the same programming language and the same
frameworks for development.

For example, the Ruby community seems to have a distinguished testing
culture that many interviewees were aware of. Core members of the com-
munity create the frameworks that more peripheral members will use, and
also publish learning resources such as blog posts and screencasts. In these
frameworks and documents, they advocate a certain testing culture: e.g.,
behavior-driven development (BDD), supported by BDD testing frame-
works, and characterized by a focus on testing primarily the happy path
— the intended behavior, ignoring edge cases for a large part.

As one interviewer opined, frameworks and the respective testing culture
allow such projects to move very fast and to produce impressive results

61

more easily. He argued that this was part of why the testing culture gets
easily adopted by novice community members.

Di�usion of Testing Practices

GitHub does not only help Communities of Practice create a shared under-
standing of their respective testing culture in peripheral and novice contrib-
utors. It also facilitates the di�usion of these practices among developers
inside and outside of individual communities.

Research on the di�usion of innovations investigates how and why tools,
practices, ideas, or technologies perceived as new — innovations — are
adopted by individuals and groups. Rogers [149] documents properties of
innovations that were discovered to support their adoption across many
di�erent scenarios (cf. chapter 2).

• Relative Advantage: adoption is more likely if the innovation has a
clear advantage with regard to known alternatives.

• Compatibility: the more compatible an innovation is to a person’s
existing practices, the more likely it is that she will adopt it.

• Complexity: the more complex an innovation is perceived to be, the
less likely it will be adopted.

• Observability: an innovation will be more likely to be adopted the
easier it is to observe existing adopters.

• Trialability: the easier it is to try out an innovation before deciding
to adopt it, the more likely it is to be adopted.

We now relate these properties to the phenomenons we found in our work.

Intra-project Processes Positive results of testing practices, such as adding
features fast or badges with passing test results, demonstrate the relative
advantage of those practices. As project owners strive to make it easy for
new contributors to get started with their project and its test suite, they ac-
tively improve their project’s technical compatibility with developers’ exist-
ing practices. In the same vein, by communicating desired testing behavior
and aligning it with the values promoted by thought leaders, they improve
their project’s cultural compatibility. By lowering the barriers to entry —
e.g., by providing existing tests, examples, and a working infrastructure for

62

automated tests — project owners reduce the perceived complexity of their
project’s testing practices. Several integration and user interface features
of GitHub support his, such as the built-in ticket system, external services
like Travis CI, or the comfort with which code can be inspected using a
Web browser.

Low barriers also increase the trialability of testing practices. If devel-
opers want to try a project out themselves, all they have to do is clone
the repository to their local machine using a single command. For certain
communities, one more command will install all dependencies and run the
project’s tests: one interviewee noted how the Ruby community makes this
process especially easy.

Finally, the social transparency on GitHub makes testing practices more
observable. By looking at commits, issues, pull requests, and the respective
discussions surrounding those items, developers on GitHub are able to ob-
serve the testing culture in a project without needing to become involved
much.

Inter-project Processes As reported by several interviewees, they also
use GitHub to discover new projects, and to learn more about those they
already know about. Being able to follow the activity of developers and
to browse projects by technological niche support this discovery. In this
regard, the aforementioned properties of GitHub apply not only to individ-
ual projects, but also to the di�usion of testing practices across projects.
For example, one interviewee told us that he uses GitHub to learn how
other projects use the testing framework that his work project uses (L4).
This shows how these mechanisms are even able to di�use practices into
organizations not necessarily hosting their projects on GitHub (which was
the case for L4).

Impact

We discovered several mechanisms that help creating a shared understand-
ing of a project’s testing culture and di�use testing practices to other indi-
viduals and groups. Because of the exploratory nature of our research, we
have not yet discovered best practices, but candidates for such. From these
mechanisms, we can derive several preliminary guidelines.

Companies and core members of software projects should strive to lower
the barriers to testing by providing testing guidelines, test examples, an

63

easy to set up testing infrastructure, and integrated automatic testing. Do-
ing so should support cultivating a project culture that embraces appro-
priate testing practices, ideally leading to higher quality software products.
Project participants learning these practices will be able to apply their
testing knowledge in future projects, which would be especially helpful in
di�using these practices in organizations.

Projects should visibly communicate their testing culture by providing a
high degree of social transparency. Showing that the normative behavior
in a project is to provide certain kinds of tests should help developers
adopt these practices more easily. Testing culture can be picked up by new
developers if they can observe the discussions surrounding changes, making
it easier to understand the requirements of a project and the rationales
behind them. This may be supported by clearly communicating what the
testing status of a project is, e.g. by displaying a badge or by providing a
more detailed project dashboard.

These results suggest concrete strategies that could be used to improve
the adoption of not only testing practices, but software engineering prac-
tices in general. As such, some of the adoption patterns (cf. chapter 7)
reference some results of this study.

5.2.6. Limitations

Our study is a first, exploratory investigation into the e�ects that the char-
acteristics of social coding sites like GitHub may have on testing practices.
Therefore, we chose an approach based on Grounded Theory. While we
achieved saturation in our interviews, it is likely that we did not reach
all possible perspectives on GitHub use. Even though we sent out inter-
view invitations to active but random users of GitHub, the final interview
participants were all self-selected volunteers.

Similarly, the participants of our questionnaire were again chosen ran-
domly, but ultimately were self-selected. The quantitative validation of our
results therefore is again only applicable to the volunteering sub-population.
The general population of GitHub might have di�erent characteristics and
opinions.

Apart from the questionnaire, we cannot provide quantifiable results. We
cannot judge the strength or pervasiveness of any of the presented processes,
mechanisms, or e�ects.

64

Finally, our results are not generalizable. We provide a view of testing
on GitHub as seen by a certain self-selected population.

Yet, our research identified current challenges and solutions that are used
in commercial and hobbyist open source software development. These are
good indicators for the applicability of social media mechanisms such as
social transparency to the problem of practice adoption addressed by this
thesis.

5.2.7. Conclusions

When hosting a project on a social coding site such as GitHub, project
owners interact with external contributors with varying knowledge and val-
ues regarding testing. Communicating a project’s testing culture to such
a population is an important, yet di�cult task. In commercial software
development projects, similar communication is required, e.g. to introduce
new employees to a project.

In our study, we found how social transparency supports developers on
GitHub in communicating and di�using the testing practices they have
chosen for their projects. While several project owners reported adoption
issues, others told us about possible solutions: clearly communicating test-
ing requirements to achieve better adoption; awareness features to support
the formation of normative behavior; and examples that are easily cus-
tomizable lower barriers for newcomers.

Even though projects on GitHub can struggle with the adoption of test-
ing practices by contributors, we found that social media can support the
adoption process. Using these e�ects systematically may thus be a viable
strategy to improve the adoption of software engineering practices in orga-
nizations.

Di�erences between public open source development and private com-
mercial development in organizations should have an influence on the ap-
plicability of social media e�ects in these di�erent scenarios. However,
similarities can also be expected and uncovered by relating our findings to
theories on human behavior that are also relevant in organizations. For
example, communities of practice exist in companies as well, and Rogers’
di�usion of innovations model is also applicable to such organizations.

The following section reports on another study, in which we investigated
a category of social media for developers that are further away from the
development process than GitHub: developer profile aggregators.

65

5.3. Empirical Study: Mutual Assessment in Social Media
for Developers

The previous section investigated the influence of GitHub on developers’
behaviors. Yet, developers use social media to a much larger extent —
GitHub is only a single site in a larger ecosystem. To access this ecosystem
and to investigate which consequences participation in the ecosystem has
for developers, this section reports on a study of developer profile aggrega-
tors [162] — Masterbranch9 and Coderwall10.

Masterbranch and Coderwall are examples of websites specifically created
for the self-display of software developers, aggregating data from other sites
such as GitHub and Stack Overflow11. As our study finds, these sites
provide access to a community of innovative software developers who are
active in open source development and are either working in companies or
as contractors. As such, they are suitable study subjects for exploring the
influence of social media on software engineers.

Developers’ participation on these sites influences how they manage their
reputation and how others engage with them. Developers use social media
to connect with their communities and to monitor, publicize, and grow their
skill sets. Social media are connecting like-minded developers, resulting in
new social ties that foster collaboration and can encourage entrepreneur-
ship at international scale. By using Masterbranch and Coderwall as an
entry point, we survey and interview participants of the social programmer
ecosystem. Our approach allows us to find the motivations and strategies
for participating in this ecosystem.

We use the following terminology. A profile is a webpage that contains
information about a user of the associated website. Profiles play a part
in managing one’s public image, that is, the way one is perceived publicly.
Social network sites allow their users to create a profile, to connect with
each other, and to inspect each other’s connections with other users of the
site [20] — examples are LinkedIn, Twitter, and GitHub. Masterbranch
and Coderwall are developer profile aggregators, as they create profiles out
of several existing profiles and activities on other sites for a single user.

9
http://masterbranch.com

10
http://coderwall.com

11
https://masterbranch.com/html/about.html

66

http://masterbranch.com
http://coderwall.com
https://masterbranch.com/html/about.html

5.3.1. Background

This section discusses research on profiles in online communities and their
influences on human behavior. Following this, we introduce the two web-
sites that we investigated as our window into the social programmer ecosys-
tem.

Profiles in Online Communities

The importance of public user profiles for online communities and how
people choose to manage their profiles in those communities is well estab-
lished. One of the most extensively studied social media communities is
Wikipedia [106, 96, 142, 74]. Since its inception in 2001, the online en-
cyclopedia has become a reference model for how an online community
can organize, collaborate, share, and create. Online communities such as
Wikipedia are open collaborative spaces that allow virtually anybody to
contribute. Because of this inherent openness, the quality, accountability,
and trustworthiness of contributions is often suspect. Therefore, it is im-
portant that a community be able to quickly and adequately evaluate a
user’s contributions to that community.

Several authors have discussed the issue of trust in online communities
and how trust issues can be mitigated through the application of theories
of social translucence and social transparency [56, 171, 172] (cf. chapter 4).
In online communities, di�erent levels of transparency cause di�erent be-
haviors. As discussed in the previous chapter, higher identity transparency
increases actor accountability: members are more likely to act in an ac-
countable manner if their profile is available for other community members
to review. Also, members can better assess the quality of information based
on reputational accountability of the source. This e�ect has been shown by
Hess and Stein in a study on Wikipedia’s “featured articles” (articles voted
by the community to be of very high quality) [167]. They found that articles
with contributions from higher reputation authors — as judged from their
public profiles — were more likely to become featured articles. However,
a negative consequence of higher identity transparency could be that cre-
ativity su�ers due to members not wishing to contribute information that,
while potentially valuable to the community, might negatively a�ect their
reputation.

Dabbish et al. investigate how software developers manage their on-
line profiles by studying GitHub users [38]. They find that while explicit

67

self-promotion is frowned upon, users are actively managing their public
image and that users believe visibility to be important for the success of an
open source project. Watching and being watched also have benefits and
requirements. Users say that having watchers is a motivation to continue
making contributions. Also, they are more conscious of the quality of their
contributions when a project has more watchers.

Developer Profile Aggregators

A recent trend in social media for software development is the emergence of
profile aggregation sites for developers, such as Masterbranch and Coder-
wall. These websites are specifically tailored to software developers and ag-
gregate developers’ activities from across several other websites, providing
a combined social programmer meta-profile. Contrary to more established
sites, such as ohloh12, Masterbranch and Coderwall focus on the developer
rather than on individual projects.

Both sites provide public developer profiles that are mostly generated
from activities on social code sharing sites such as GitHub, BitBucket13,
or SourceForge14. Other sites, such as LinkedIn15 and Stack Overflow, are
also supported. The customers of both sites are companies that are looking
to hire software developers, for which the sites provide them with special
access to their databases of developer profiles. According to their operators,
Masterbranch and Coderwall both aim to make it easier for their customers
to find candidates suitable for hiring. Customers of Masterbranch so far
are mainly web-focused companies of all sizes, most of them younger than
10 years, and some of them very well-known.

Masterbranch

Masterbranch was founded in 2009 by Ignacio Andreu, Juan Luis Belmonte,
and Vanessa Ramos. In 2011, the creators started growing it into a com-
munity for software developers. As of February 20th 2012, more than 9,000
users had registered with the site.

Fig. 5.2 shows a screenshot of a developer profile16. On top, it displays
the name, location, and image of the user, as well as the DevScore (a value

12
http://ohloh.net

13
http://bitbucket.org/

14
http://sourceforge.net/

15
http://linkedin.com

16Taken from http://masterbranch.com/lsinger

68

http://ohloh.net
http://bitbucket.org/
http://sourceforge.net/
http://linkedin.com
http://masterbranch.com/lsinger

calculated from the developer’s activities, such as commits to projects).
To the right, a button allows users to give free beer to the developer — a
symbolic act of endorsement.

330
DevScore

Leif Singer
Hanover, Germany

Software Engineering Social Software Communities of Practice PhD Student,
Husband, Father, Cappuccino Lover, Mac User, Drummer, Ukulelist.

Give free beer

5
connections

Programming skills open source private Code

Objective-J
1 project Since 2008

Python
1 project Since 2011

JavaScript
1 project Since 2009

make
1 project Since 2009

 May 2011 to Apr 2012

 play-dotcloud

A module for the Play! framework that ma… more

95%
19 commits

PYTHON YAML XML

 Dec 2009 to Jan 2010

 Play-Push

A demo app that shows how to use Cappucc… more

100%
13 commits

OBJECTIVE-J JAVA HTML JAVASCRIPT

CSS YAML MAKE

 Jun 2010 to Jun 2010

 PushNotificationsJava

A class that sends push notifications to… more

100%
3 commits

JAVA

 Mar 2009 to Mar 2009

 cpstudentgroup

A repository for the Cappuccino student … more

100%
3 commits

 Mar 2011 to Mar 2011

Languages & technologies
OBJECTIVE-J JAVA HTML YAML PYTHON JAVASCRIPT CSS MAKE XML APPLESCRIPT

Projects

Arnaud Héritier
37.2k DevScore

Julien Viet
34.4k DevScore

James Ward
20.2k DevScore

clement escoffier
18.2k DevScore

Green Luo
12.3k DevScore

Are you an Open Source
developer?

Build your profile based on
your Open Source experience
in under a minute.

Create a profile now!Create a profile now!

Stats and reputation

35 views

169 search hits

1 beer received

96 reputation

x1 project

Related profiles

Developers Project leaderboard Signup Developers » Login Employers »Login Employers »

Figure 5.2: A developer profile on Masterbranch.

A table generated from the user’s repositories displays the distribution
of programming languages across these projects. Next, the profile lists
projects the developer has worked on. For each project, the name, duration,
description, and the programming languages used are displayed. The blue
arcs indicate the percentage of commits the user contributed to a project.

Masterbranch awards Most Valuable Programmer (MVP) achievement
badges to their users. Each week and for each project known to the site,
the most active committer of the project earns the badge.

In addition to developer and project profiles, the site randomly displays
some of the most active developers on its front page. An ordered list of the
95 most active developers acts as a simple leaderboard.

69

Coderwall

Coderwall was founded in 2011 by Matthew Deiters. As of March 1st 2012,
more than 15,000 users had registered with the site.

Similar to Masterbranch, Coderwall analyzes the repositories of develop-
ers on social code sharing sites. It awards achievement badges to developers
when certain conditions are met. For example, if a developer uses at least
four di�erent programming languages in the repositories she owns, Coder-
wall will award her the Walrus achievement badge (Fig. 5.3(a)). The Forked
achievement is awarded if someone else forked — that is, made their own
branch of — a developer’s project (Fig. 5.3(b)).

(a) (b)

Figure 5.3: Coderwall’s Walrus (left) and Forked (right) achievement badges.

Fig. 5.4 shows a screenshot of a developer profile17. On top, it displays
the name, current company, location, and image of the user. Below this
header, there is a timeline that chronologically lists events regarding that
developer: when they earned which achievement, when they gave a talk,
and others.

The right side of the page displays the developer’s skills. A button of-
fers to endorse the developer — a low-e�ort mechanism that, similar to
Facebook’s like, might signal approval. Next to the button, the number
of endorsements the developer has received is displayed. Finally, the pro-
file page lists the achievements earned by the developer. During our study,
Coderwall added a list of people the developer is connected with on Twitter
(not pictured).

Developers registered with Coderwall may join a team, typically named
after a company. For each team, the members’ contributions are accumu-
lated, resulting in an overall score for the team. This score determines the
team’s ranking on the Coderwall team leaderboard18.

17Taken from http://coderwall.com/lsinger

18
http://coderwall.com/leaderboard

70

http://coderwall.com/lsinger
http://coderwall.com/leaderboard

Leibniz Universität Hannover

Software Engineering, Social Software, Communities
of Practice. PhD Student, Husband, Father,
Cappuccino Lover, Mac User, Drummer, Ukulelist.

Leif Singer
Hannover, Germany

Objective-J Java Python JavaScript

Play! Framework HTML CSS

Groovy

11

Skills

Endorse LeifEndorse Leif

Achievements

Unlocked the Walrus achievement for using at least 4
different languages throughout your open source
repos. Java, objective-j, javascript, and python.

Play-Push play-dotcloud

Unlocked the Forked achievement for having a project
valued enough to be forked by someone else.

hannoverjs.de YouTube-video-
downloader-for-Safari

Unlocked the Charity achievement for forking and
commiting to someone's open source project.

play-dotcloud

Unlocked the Python achievement for having at least
one original repo where Python is the dominant
language.

 coderwallcoderwall BETABETA Leaderboard Sign Up Sign In

Figure 5.4: A developer profile on Coderwall.

5.3.2. Study Design

We use a mixed methods approach to better understand how social media,
specifically tailored to software developers, can influence the developers in
software engineering communities.

Research Questions

We designed a set of research questions to help us understand why soft-
ware developers participate in the social programmer ecosystem, how they
interact, and the impact and challenges they face.

RQ1: Why are software developers participating in the social program-
ming ecosystem?

Software developers’ public display of their development activities through
social media is a relatively recent phenomenon enabled by new technology
platforms. Our first research question seeks to examine the motives that
software developers have for participating in this emerging ecosystem.

71

RQ2: How do software developers interact in the social programmer
ecosystem?

Users of developer profile aggregators are constantly signaling informa-
tion about themselves and their work. This information might be inter-
preted di�erently by di�erent actors participating in the social programmer
ecosystem. We are particularly interested in how software developers might
be interacting with each other using profile aggregators. Research question
2 aims at examining these interactions.

RQ3: What is the impact of participating in the social programmer ecosys-
tem?

Our third question aims to investigate the impact of participation in the
ecosystem. We focus on how software developers might benefit from the
environment.

RQ4: What are the risks and challenges faced by participating in the
social programmer ecosystem?

Developer profiles might be interpreted di�erently based on di�ering or-
ganizational and cultural values of the participants of the social programmer
ecosystem. Their interpretations may depend on community standards and
conventions of practice induced by these standards [19]. Since such di�er-
ences may give rise to communication problems, we investigate risks and
challenges for those people using and participating in the ecosystem.

Procedures

To our knowledge, our study is the first to examine developer profile ag-
gregators and their role in the social programmer ecosystem. As such, it is
of an exploratory nature and is concerned with questions of why and how.
This calls for qualitative methods, which we describe in this section.

In our study, we distributed questionnaires to Masterbranch and Coder-
wall users and then conducted interviews with some of them.

Questionnaires

Our instrument consisted of two web-based questionnaires: one was tailored
for Masterbranch users and the other for Coderwall users. The question-
naires were equal in content and order of items, except for the terminology
referencing particular features of each site. We pre-tested the questionnaire
by distributing it to 10 Coderwall users, of which 5 were sampled at random
and 5 were taken from the site’s front page. We received responses from

72

3 users, and 2 of those gave feedback on the survey. After minor changes
in both questionnaires (wording; additional “I don’t know” options), we
distributed our survey to a larger sample.

We used several forms of distribution. First, the questionnaires were ad-
vertised on Twitter by some of the authors. The operators of Masterbranch
and Coderwall supported us by retweeting our invitations. Masterbranch
published a blog post, inviting their users to take part in the survey. In this
phase, we gathered 28 responses from Codewall users and 9 responses from
Masterbranch users. To increase the number of responses, we collected the
profile pages and email addresses of 315 random Coderwall members (Mas-
terbranch does not provide random access to member profiles). We then
emailed those users, inviting them to take our questionnaire. This resulted
in another 46 responses.

Each form of distribution contained a URL linking to the respective ques-
tionnaire19. Both questionnaires were made available online using Google
Forms from February 29th to April 19th 2012. Apart from an introductory
cover letter, the main content sections were:

Demographics: we asked for information such as age, gender and country.
We also measured respondents’ professional experience in years and their
current employment status, which included their primary responsibility at
an organization (if employed), the organization’s size and its age.

Site membership: we inquired when the respondent signed up for a profile
on the respective site and asked why they did so.

Site features: for each of the features of Coderwall and Masterbranch
described earlier, we asked how important they are to the respondent (on
a Likert scale). We also asked some specific questions for each feature. For
example, we asked respondents whether they care if people look at their
profiles and what kind of profiles they are most interested in. We also
asked whether they are applying explicit strategies for earning badges such
as achievements on Coderwall, or the MVP on Masterbranch. Finally, we
inquired about eventual strategies they might be using for earning achieve-
ments.

Responders were also asked to optionally submit their email addresses if
they agreed to be contacted for an interview with our research team. In
total, we received 35 responses with email addresses included, 31 of which
came from Coderwall users.

19Masterbranch: http://bitly.com/yMo22Q;
Coderwall: http://bitly.com/zqrCo9

73

http://bitly.com/yMo22Q
http://bitly.com/zqrCo9

Interviews

To scrutinize the answers from the survey, we invited all of the 35 survey
participants who had volunteered to do interviews via email. Of these 35,
14 software developers enrolled, 2 of them from the Masterbranch survey.

We then conducted semi-structured interviews with software developers.
We first asked developers about their current job situation — for example,
what kind of company they work for or what the team structure is. We
then used their answers from the questionnaire as a starting point for deeper
inquiry, asking for the reasons and motivations for their behaviors.

Interviews were conducted mostly via Skype and were recorded; for 2 of
them we used a text chat.

Participants

Overall, we received 83 responses to our questionnaires, 74 of which came
from Coderwall users. 68 of the respondents were software engineers (82%),
14 were team leaders and 1 was a non-technical co-founder of a software
company. We interviewed 14 software developers, among them one contrac-
tor. Table 5.2 summarizes our interview participants and lists the identifiers
we assigned to them.

D1, D3-D5, D7, D8,
D10-D13

employed in a software company

D6, D9, D14 consultant or contractor
D2 unemployed

Table 5.2.: Summary of interview participants.

Our interviewees had diverse backgrounds. To illustrate this, Table 5.3
provides a short introduction for some of the participants.

Data Analysis

We used an approach based on grounded theory for data analysis [30].
Questionnaire data was split into two data sets and two of the authors
open coded each set independently. Two authors then cooperatively en-
gaged in axial coding our preliminary set of codes and, as a result, 15 cate-
gories emerged. We used those categories to code interview data. Then, we
transcribed excerpts from the interviews that were related to our research

74

Code Background
D1 Developer at a Web development shop in Norway, mostly Ruby

development.
D3 Developer working in an image recognition company from Spain.
D6 Developer and team coordinator in a Linux security and deploy-

ment company in the USA.
D10 Developer and team coordinator in a large software company in

the USA, managing proprietary and open source e�orts.
D11 Java developer for a Polish outsourcing company.

Table 5.3.: Backgrounds of select interview participants.

questions. The next phase comprised of selective coding over all extracted
quotes (from questionnaire responses and interview transcriptions). During
this process, we iterated on our previous code system and identified both
the core categories and relationships that would help us answer our research
questions20.

5.3.3. Findings

This section reports the findings from the surveys and the interviews with
developers. For brevity, we provide quotes only for some of the findings.
The source of each quote is noted in square brackets — [Dx] referring
to an interview with a developer; [SMx] and [SCx] to survey answers for
Masterbranch and Coderwall, respectively.

RQ1: Reasons for Participation

To answer research question 1, we investigated why developers participate
in the social programmer ecosystem.

Many software developers told us that they are curious about technol-
ogy, passionate to learn, and always trying to improve themselves
as developers. A variation of this was given in 20 of the 83 survey answers
as the reason to join one of the developer profile aggregators.

Taking part in the ecosystem allows developers to discover novelty —
by joining a developer profile aggregator, publishing code on GitHub, or
interacting with others on Twitter. Seeing others do interesting new things
with technology inspires them. A special case are high-profile develop-

20The coding system from the later phase can be found in appendix B

75

ers that are vocal about their technological discoveries, respected in the
community, and followed by many.

“On Twitter, I follow a few prominent software developers. For example,
Kelly Sommers21 from Canada, she’s constantly trying new things. I don’t
think she ever sleeps. She’s a great source of inspiration.” [D11]

A reason that was very commonly given for participation in the ecosys-
tem was enjoying the interactions with other developers: “this incred-
ible group of fascinating people that get interested in all sorts of things,
makes it interesting to talk with them, and work with them” [D1]. This was
mentioned in 8 of 14 developer interviews.

Interestingly, very few participants told us that they were looking for
competition with regard to the number of projects, followers, or badges
one has on the di�erent social media sites. It was mentioned by 5 develop-
ers in the interviews, and only by 3 of 83 survey respondents when asked
about achievements. Related to that, there was also the theme of pride
— developers said they liked showing o� their achievements and comparing
themselves with others. Some specifically mentioned that they were proud
of being part of a great team.

The most important reason for enjoying the community was recognition
of others. In the survey, 19 of 83 answers with regard to the endorsement
features of the websites were about recognition or validation of one’s work.
Developers like getting respect from their peers — and from random people
as well — for the work they are doing. “I would like to have some recognition
from the community [...] [my projects] are fun to me, but if they are only
on my hard disk then nobody knows” [D3]

Similarly, helping others was also very important for several developers:
“I like to be useful to others, and this is a good way to do that” [D3] Some
explicitly said that interacting with, and helping others, motivated
them to contribute more and to become better developers.

Finally, a few participants mentioned that they were pushed into the
ecosystem by their peers — they had been asked to join a site or a
service, and to contribute code of their own. “I started to publish because
my friends told me that [a project] didn’t have any [visibility]” [D3]

A few developers mentioned that they were striving for visibility because
they were searching for work. Taking into account all questions of the
survey, 6 of 83 respondents mentioned this. These developers said that

21
https://twitter.com/kellabyte

76

https://twitter.com/kellabyte

they would like to improve their chances of being recognized by recruiters.
They believe that the simplifications of experience that the developer profile
aggregators provide help non-technical recruiters in assessing developers:
“I love the idea of the badges, it helps communicate to non-technical people
(like recruiters) what I know” [SC14]

RQ2: Modes and Terms of Interaction

To answer research question 2, we investigated how developers interact in
the social programmer ecosystem.

Survey Results Table 5.4 shows the results regarding the subjective im-
portance of di�erent features of the developer profile aggregators. All 83
respondents were factored in. The questions provided a Likert-type scale
ranging from 1 — very important to 5 — not important at all. An option
reading “I don’t know that feature” was also available.

Mean Median Don’t know
Achievements 2.5 2.0 1
Endorsements 2.8 3.0 27

Leaderboard 3.3 3.0 15
Featured Developers 3.3 3.0 37

Table 5.4.: Importance of the features of developer profile aggregators.

The achievements feature, possibly being the most visible, was most im-
portant, followed by the endorsement feature. Strikingly, 37 of 83 respon-
dents did not know the “featured developers” on the front pages of the
developer profile aggregators. Supported by this additional data, we will
now answer research question 2.

Many developers participate in the social programmer ecosystem to con-
nect with others — peers, interesting people, or high-profile developers. To
be able to do so, they need to assess other developers first.

As part of this assessment, they are investigating what others have
created. Thus, the open source projects of developers mediate relationships
in the ecosystem. They allow developers to construct a “coder footprint” of
one another. “[When] I look at repos around this topic [data visualization],
I may be interested in seeing the coder footprint of people that work in this

77

area [...] their favorite languages, the topics they write code about, what
they work on” [D6]

Constructing such a footprint not only helps in assessing strangers on
the Internet. It is also being used to make sense of coworkers who
might be geographically dispersed. In a similar manner, developers are
using common interests to find interesting people and connect with them.
While some developers will interact with those they discover, others choose
to passively follow the activity of developers.

Developers are aware that their peers are assessing them as well. This
leads to developers wanting to manage their “personal brands” [D9], that
is, consciously constructing a public image of themselves. The social pro-
grammer ecosystem is one of mutual assessment.

Developers enjoy and desire recognition by peers, which was mentioned
by 11 of 14 interviewed developers: “there’s the social component. So peers
— developers, coders — can see that. It gives you a good feeling when
others see what I’ve achieved” [D12] On the other end of this interaction,
developers do recognize and acknowledge good work: “I knew he worked
hard in that area and felt like giving him recognition” [SC58] This finding
may be related to the relative importance of the endorsement feature (see
Table 5.4).

RQ3: The Impact of Participation

This section reports what we found with regard to research question 3,
which asks about the impact of participation in the social programmer
ecosystem.

Our interviews revealed that the gamification employed by features
such as Coderwall’s achievements is, in fact, at least somewhat e�ective:
“if I need to make a repository, I’ll put it on Github, it’ll exist forever, and
I can get a badge for it. That’s really awesome. [...] It pushed me in the
right direction. It forced me to play the game for the right reasons.” [D13]
In our interviews, 8 of 14 developers explicitly mentioned that they felt
motivated by the developer profile aggregators. This may be related to the
high importance given to the achievement feature in Table 5.4.

A closer look revealed that those features lower the barriers for par-
ticipation in developer teams and communities. As a result, opportunities
for participation are more visible and tangible: “I have been trying to get
into [the open source] scene for a while, when you see an achievement that

78

is available for a contribution, it is the final nudge to make an actual con-
tribution.” [D2]

Developers also reported other reasons for participation that go beyond
ludic motivations and might impact their professional progress. For in-
stance, learning new programming languages is a consequence of en-
gaging in such an environment: “I wouldn’t think of starting a repository in
a specific language just to earn an achievement, but it may push me towards
choosing a new language to learn” [D6]. Also, achievements are seen as a
window for exploration and experimentation. When asked about why
achievements are important, one respondent said: “they make me want to
achieve something that I didn’t know about before or open me up to new
ideas.” [SC38]

The impact of such features is not limited to individuals. They mo-
tivated whole software teams to contribute more: “Coderwall has
generally upped the game in the o�ce amongst our engineers. It has helped
to encourage all of us to publish more code online.” [SC51]

As we saw in the findings for research question 1, developers are interested
in novelty. Now we find that their drive for trying new things helps them
di�use new ideas. “Generally, I sign up for every online service I think
I might find interesting. [...] now our entire team is on Coderwall” [SC51]

RQ4: Risks and Challenges of Participation

Research question 4 is concerned with potential risks and challenges that
result from participation in the social programmer ecosystem. Backing
up the necessity for this inquiry, a developer also greatly involved with
recruiting told us: “It’s a new space. I think there’s some value to this kind
of thing [Coderwall], but I’m not sure where it is yet. Because it’s a new
idea.” [D10]

Many of the developers we talked to were rather isolated locally, but
well-connected with weak ties on a global scale. Even though these were
passionate and interested persons, they were not able to gain too much from
participation in mutual assessment as implemented by developer profile
aggregators: “[Importance of leaderboard] It’s not very important to me now
as soon as most of my colleagues are not very interested in open source”
[SC24] They simply lack the social connectedness that seems to help in
adopting such approaches. The relative obscurity of the leaderboard feature
that can be seen in Table 5.4 may be related to this finding.

79

Even though we have found strong preferences for passionate novelty
seeking, some developers mentioned that they struggle to keep up with
their fast-paced environment. ”The whole ‘what’s new today thing’ is ex-
hausting“ [D1]

Because developer profile aggregators, social code sharing sites, and social
media in general are very public by their nature, the actual audience of
content cannot be determined beforehand. We found two conflicting views
regarding this issue.

Several developers are aware that public signals should not receive
too much weight — they mentioned that the reasons for the existence
or absence of such signals can be very di�erent from what people might
assume. As a developer involved with recruiting told us, “The GitHub
repository doesn’t show everything though. I wouldn’t discard someone with
an emptyish GitHub repo. Might just show that most of his/her projects
were closed-source. That’s why nothing can replace a few emails.” [D4]

5.3.4. Discussion

In this section, we discuss some of the most important themes that emerged
from our study and their potential impact on software engineering practice.

Mutual Assessment

The core category that we found in our study was that of mutual assess-
ment: developers continually used social media to assess each other. For
this, the high degree of social transparency [171] in the social program-
mer ecosystem provides novel reputation signals, and known signals that
are being used in novel ways. The aggregation performed by sites such
as Masterbranch and Coderwall helps in quantifying the activities of the
programmers in the ecosystem, and it also enables the creation of symbols
for certain kinds of participation in the ecosystem.

For the developers we studied, everything revolves around their passion
for technology and learning, as well as being connected to other passionate
developers. Thus, they assess each other in terms of the technologies they
use and the problems they solve, using each others’ coder footprint (see
below) with the goal of finding new stimuli and collaborators.

Developers use the signals in the ecosystem to assess companies as well:
“I want to gauge the quality of developers in a certain organization, so I
can determine if I’m a good fit for a position there.” The presence of a

80

company’s developers in the social programmer ecosystem is an indication
of that company’s philosophy with regard to using the latest technology
and participating in open source.

We suspect that this mutual assessment in the social programmer ecosys-
tem may be supporting the dissemination and adoption of technology and
software development practices. According to Rogers’ innovation-decision
process [149], to adopt an innovation, individuals first need to gain knowl-
edge of it. The second step of that process is persuasion, the formation of
a favorable or unfavorable attitude towards the innovation. Both processes
are heavily influenced by opinion leadership. As we saw in our research, the
social programmer ecosystem supports the formation of such authorities —
e.g. through several reputation-relevant signals — and provides di�erent
communication channels through which to di�use information about inno-
vations. The mutual assessment may help creating, judging, and finding
opinion leaders.

Related to this, Murphy-Hill and Murphy [124] show that developers
learn about new technology from chance encounters with peers. Draxler and
Stevens [52] studied how Eclipse users appropriate plug-ins, distinguishing
between need-driven and opportunity-driven appropriation. We see equiv-
alents to these modes in discovery processes in social media — need-driven
and opportunity-driven discovery. Nardi [126] found similar processes when
studying Communities of Practice [103] of spreadsheet users. Individuals
who were known for their expertise — coined gardeners or tinkerers — were
approached by less proficient users about problem solutions and innova-
tions. In our study, we saw hints that the high degree of social transparency
in the social programmer ecosystem may support both serendipitous discov-
eries and targeted searches for solutions — however, without the require-
ment for physical proximity. Stack Overflow with its Q&A format seems to
produce very need-driven content. On Twitter, both forms are supported:
members passively follow trustable sources for opportunity-driven discov-
ery and actively interact with others for need-driven discovery. Sites like
Masterbranch and Coderwall support almost no direct interaction between
users, concentrating on creating opportunities for serendipitous discoveries.

Passion

The core aim of mutual assessment, we found, was identifying passion in
others. This passion appears to be the main motivation for programmers to

81

participate in the ecosystem. The participants in our surveys and interviews
love programming and creating things. The applications used in the social
programmer ecosystem and their features make it easy for them to find
interesting potential collaborators as well as interesting new technologies
to learn. In that sense, the signals of the ecosystem are a mechanism to
reduce uncertainty about technologies as well as other actors.

Developer profile aggregators are a vehicle for programmers to showcase
themselves and their achievements. The focus is not on job hunting, but
rather on having fun, building something cool, and generally “being awe-
some” — as one of our survey respondents put it. Developers use profile
aggregators to show their peers and potential collaborators how passionate
they are and that they love what they do, connecting them with each other.

As reported by Vallerand et al. [183], passion and performance are deeply
connected. Therefore it makes sense for developers in the social programmer
ecosystem to be looking for passionate individuals: these are more likely
to perform better as colleagues in companies or as collaborators in open
source projects. Specifically for the latter, Wu et al. [195] found that high
motivation — for which passion may be a sign — may influence future
engagement in open source software projects, helping others in deciding
which potential employees or collaborators might be most valuable to invest
in.

Coder Footprint

In several interviews with developers, the interviewees struggled to say ex-
actly what they were looking for in other developers. Some wished to “get
a better picture”, others wanted to “get a feel” for what kind of devel-
oper the other person was. They all agreed, however, that multiple factors
are important: the developer’s technical niche and its popularity in the
community; their diversity; their passion for technology; their standing in
the community. Quoting one of our interviewees, we call this their coder
footprint. While sites such as GitHub are also suitable, developer profile
aggregators in particular provide a condensed representation of the coder
footprint that can be grasped quickly.

Grasping the coder footprint seems to be the primary function of the
profile aggregators. Developers claimed to be trying to get a feel for what
other developers were about.

82

The coder footprint serves an important purpose in the social program-
mer ecosystem. Developers are driven by a passion for new technologies,
new ideas, and learning. The coder footprint allows them to navigate a vast
social space much more easily, supporting them in their search for novelty
and social connectedness. While sites are still experimenting on how to
get the coder footprint right, and several interviewees voiced criticism and
concerns regarding the validity of the signals found on developer profile ag-
gregators, the current iteration is an already useful glimpse at what future
developers might be using to assess and explore each other.

As argued by Funder [67], any accuracy when judging the personalities
of others “stems from the relevance, availability, detection, and utilization
of behavioral cues.” The social transparency [171] found on sites and ser-
vices of the social programmer ecosystem provides for many such cues. For
example, an interviewee also involved with recruiting explicitly mentioned
that he watches how potential hires behave on public mailing lists and in
issue discussions on GitHub — an application of interaction transparency
for assessment. The coder footprint as a simplification of such behavior
seems to be a useful construct helping with the aforementioned mutual
assessment.

Diversity

Developers were regarded as diverse when they were perceived as interested
in multiple technologies, ideally with di�erent characteristics. Especially
very current technologies — such as Clojure or NodeJS — and those re-
quiring di�erent modes of thinking — e.g. object-oriented vs. functional
programming languages — were used as signals for diversity. Developers
tried to become more diverse as part of their personal improvement e�orts
and also looked for it in other developers.

We believe this might be an indicator for a cultural change in software
development. Proficiency in a certain niche is no longer enough, as de-
velopers are expected to be able to easily adapt to a changing technology
landscape. Developers expect it from others as potential collaborators or
sources of interesting information, and also from themselves.

Several parties might be interested in leveraging this insight. Developers
that are aware of it might take it as a motivation to become more diverse
themselves. Others might try exploiting the potential for manipulation, for
example by creating many repositories containing trivial projects in several

83

programming languages. Developer training — for example at universities
— is already somewhat diverse in that it mostly teaches concepts instead
of concrete programming languages. However, these are often restricted to
only one or two programming paradigms, such as object-oriented program-
ming. Taking a cue from software development practitioners, universities
might want to support their students in attaining a higher level of diversity.

While most participants of our study used diversity in programming lan-
guages as a signal for actual diversity and adaptability, there might be
other, more appropriate measures for this character trait. A few inter-
viewees stressed the importance of public communication, for example on
Twitter, to help in assessing this. Therefore, tag clouds and badges of pro-
gramming languages might just be a first iteration of a more important
idea — simplifying the assessment of diversity in developers.

As Ye and Kishida report [196], learning is an important motivation of
open source developers. Diversity as a signal for being able to learn di�erent
concepts seems like a good way to gauge the motivation of a developer.
Therefore, similar to passion, diversity may be an appropriate surrogate
for assessing others’ motivations. Again, social transparency in the social
programmer ecosystem makes suitable signals publicly available.

Impact

Our findings indicate the presence of novel dynamics between developers
in the social programmer ecosystem, enabled by an unprecedented social
transparency in the software engineering domain. These dynamics may
have multiple positive as well as negative impacts.

The software developers we talked to viewed participation in social media
and mutual developer assessment in a largely positive light. For them, it
presents opportunities to learn about new technologies and to connect with
other like-minded people who they might not be able to find locally in their
own organizations. Several developers also spoke of how participating in
the social programmer ecosystem and knowing that other developers were
following their activities propelled them to contribute more or better quality
code, and to improve themselves as developers. This e�ect has been shown
for GitHub by Dabbish et al. [38].

This study explores how a group of early adopter software developers are
interacting with new social media platforms. As such, the question arises
as to whether and how these trends extrapolate to the rest of the software

84

development community. Software developers outside the early adopters
group may find many of the same benefits in using social media as part
of their development activities. However, motivations for participation by
this group may well di�er from those of the early adopters.

There is also the issue of developers feeling compelled to participate in the
ecosystem to keep up with expectations of the wider software development
community. Many developers are not able to participate freely in social
media due to their employment circumstances; others may be dissuaded
by the potential for public criticism of their work. A future developer
landscape that expects a public portfolio of work available for contribution
or participation in the community could have the unintended consequence
of isolating these developers from the community rather than connecting
them to it.

5.3.5. Limitations

We used a Grounded Theory approach, which involved conducting sur-
veys and semi-structured interviews, and coding of the results from these.
These methods do not allow us to infer statistical significance of our find-
ings. However, these methods are well-suited for exploration and discovery
and can suggest how and why developers participate in the social program-
mer ecosystem. As this is the first study on the role of developer profile
aggregators, we consider these methods and their focus on exploration to
be suitable for our purposes.

The responses to our questionnaires and interviews came exclusively from
members of the Coderwall and Masterbranch sites, as these were the most
visible when we started our research. Participants in both the question-
naires and the interviews were self-selected by volunteering for them. There-
fore, the responses are naturally biased. We found that many developers ex-
hibited traits of the innovators adopter category as defined by Rogers [149]:
with only few local ties, they were connected globally with many weak ties
and used those to bring new ideas and technologies into their own local
societies — Rogers calls them venturesome. This character trait may have
helped with the relatively good response rates for the questionnaires and
interviews (e.g., 35 of 83 total respondents o�ered to do an interview, of
which 14 were realized). Even before sending out personal invitations to
members of Coderwall, most responses came from members of Coderwall

85

instead of Masterbranch. That might be explained by the relatively high
media exposure the site had recently22.

Another limitation of this study lies in the relatively low number of in-
terviews conducted. However, we were able to increase the credibility and
validity of our findings by triangulating data from interviews and survey re-
sponses. Also, the interviewees had a wide range of di�erent backgrounds,
allowing us to consider many di�erent perspectives in this work.

The current users of developer profile aggregators are innovators and
early adopters, and thus are not representative of the entire software devel-
oper population. However, they allow us to gain early insights into the role
of profile aggregators in the ecosystem of social programmers, and to shed
light on the potential impact of these sites on software developers.

Coderwall and Masterbranch are among the first sites to aggregate de-
veloper data across various social media developer services. As more indi-
viduals start using these sites and other services emerge, additional studies
should be conducted to gain further insights into the complex ecosystem of
social programmers.

5.3.6. Conclusions

We discussed a group of software developers that are using new social me-
dia tools to communicate and share their development activity with fellow
developers. These developers, their motivations, and the technology infras-
tructure they use combine to produce an ecosystem where open collabora-
tion and public sharing of who you are and what you do is ingrained.

Our findings indicate that the developers we surveyed are motivated by a
strong passion for discovery and learning about new software development
technologies. To satisfy this need, they explore the technology landscape
through the prism of other like-minded developers’ activities and coder
footprints. They are aware of other developers and actively assess and
are assessed by them. This process is facilitated and encouraged by the
underlying technology infrastructure of the social programmer ecosystem,
which places its emphasis not on software projects, but rather on software
developers and their activities across multiple projects and communities.

Across the di�erent social media sites we encountered in our study, we
found several mechanisms that could be appropriated to support the adop-
tion of software engineering practices. Developers enjoy the playful nature

22
http://techcrunch.com/2012/02/27/coderwall-hacker-reputation-system/

86

http://techcrunch.com/2012/02/27/coderwall-hacker-reputation-system/

of this ecosystem. They use Twitter to follow opinion leaders and to con-
nect with one another. Their peers and social media mechanisms such as
achievement badges can motivate them to try out new technologies and
practices.

5.4. Summary

This chapter first showed that the adoption of software engineering practices
can be problematic. Even though processes and tools are in place that aim
at improving adoption, individual developers sometimes still do not comply
even with mandated practices. Because of the positive e�ects software
engineering practices can have, this is undesirable for organizations involved
with software development.

The chapter then reported on two studies on the use of social media in
software development: first concentrating on the adoption of testing prac-
tices on the social coding site GitHub, providing insights into adoption
problems regarding testing practices and into strategies that can allevi-
ate these problems. Secondly, this chapter investigated developer profile
aggregators and how developers use them and other social media tools to
assess each other. Both studies indicate that social media and insights from
human-computer interaction could be used to address problems of practice
adoption.

For example, in the study of developer profile aggregators, we found that
virtual badges can push software developers to try out new technologies.
The study on testing practices in GitHub found that providing easy access
to test code helps in communicating testing as a social norm, persuading
others to imitate this behavior. The next chapter introduces a process to
systematically use such e�ects to improve the adoption of software engi-
neering practices by developers in an organization.

87

6. Supporting Practice Adoption in Software
Engineering

As shown in the previous chapter, the adoption of software engineering
practices is a problem. Yet, some approaches exist that improve the adop-
tion of practices — even if this simply means pushing a developer to try a
practice for the first time.

However, these approaches do not seem to be guided by a systematic ap-
proach, and are not easily reproducible by others. GitHub, Masterbranch,
and Coderwall for example are private enterprises. It is therefore not clear
whether they have applied any systematic method for building their sys-
tems in a way that emphasizes features that can have a positive e�ect on
practice adoption. Even if they have: their approach is not public. There-
fore, such a systematic approach that shows how to use these e�ects for
improving the adoption of software engineering practices is missing.

After first defining several relevant terms, this chapter introduces a pro-
cess that explains how change agents in organizations can systematically
design treatments for persuasive interventions that improve the adoption
of a practice by their developers. To avoid lengthy repetitions and ambigu-
ities, the process is called the Practice Adoption Improvement Process and
is abbreviated as PAIP. To apply this process, the change agent will need
a set of adoption patterns for designing the aforementioned treatments —
these are provided by chapter 7. Chapter 8 evaluates a preliminary version
of the process and the accompanying patterns.

6.1. Definitions

This thesis provides a process that enables an organization to improve the
adoption of software engineering practices by the organization’s software
developers. In the process, a change agent chooses adoption patterns that
support the change agent’s adoption goal by mitigating the organization’s
adoption problem in a persuasive manner. Based on these patterns, the

89

change agent designs a treatment and deploys it in the organization as a
persuasive intervention.

To clarify the meaning of the preceding paragraph, this section introduces
some relevant terms. They also support the explanation of the process in
the succeeding section. Some terms may have di�erent meanings outside of
this thesis.

Definition 9: Organization.
An organization is a social entity that has a collective goal. Reaching

that goal involves writing software, and some or all members of the
organization are software developers. Optionally, each member of the
organization is part of one or more groups inside the organization. Such
groups can imply a hierarchical order.

In accordance with definition 9, an organization can e.g. be a company
with a software development department, a loosely assembled team, or an
open source project. All of these provide a valid context for the application
of this thesis’ results.

Definition 10: Software Engineering Practice.
A software engineering practice is a set of systematic activities that

are expected to have an influence on non-functional properties of the
software produced by developers applying the practice or on the process
of developing the software.

An example for a software engineering practice as defined in definition 10
is test-driven development (TDD). It has been shown to lower the defect
rate of software products in several cases [125]. Other examples are the
use of a version control system, di�erent systems that prescribe how to
commit to version control1, or documentation that might be required for
compliance with policies of partners or government institutions, improving
a software products marketability or enabling it in the first place. Sec-
tion 5.1.1 provides additional examples for valuable software engineering
practices.

1See, e.g., a blog post advertising committing frequently: http://ducquoc.

wordpress.com/2011/06/09/svn-best-practices/

90

http://ducquoc.wordpress.com/2011/06/09/svn-best-practices/
http://ducquoc.wordpress.com/2011/06/09/svn-best-practices/

PAIP is performed by a role called the change agent. Adapted from
Rogers’ [149] definition, this thesis defines the change agent as follows.

Definition 11: Change Agent.
A change agent is a member of an organization who influences the

organization’s developers’ innovation-decisions in a direction deemed
desirable by the organization. The change agent seeks to improve the
adoption of practices.

(cf. Rogers [149])

The change agent strives to solve the organization’s adoption problems.
In a software development company, the change agent role might e.g. be
occupied by a development process manager or a person responsible for
development process governance. Within the scope of this thesis, a change
agent’s goals are always related to improving the adoption of software en-
gineering practices.

Definition 12: Adoption Problem.
An adoption problem is a situation in which the desired and the

actual adoption of a software engineering practice in an organization
di�er. The organization acknowledges that a reduction of the di�erence
is desired and supports e�orts aimed at reducing the di�erence.

Within the scope of this thesis, an organization is assumed to support the
change agent’s goals. An example for an adoption problem can be found in
chapter 8: in a student project, developers tended not to commit frequently
enough and often did not enter any commit messages, making it harder to
understand a project’s development history later.

To attempt to solve adoption problems, the change agent uses PAIP and,
in one of the process’ steps, chooses a set of adoption patterns to apply.

Definition 13: Adoption Pattern.
An adoption pattern documents the abstract core of a known solution

to a recurring adoption problem. Instantiations of an adoption pattern
are tailored to a specific problem they are supposed to solve, so that two
instantiations will usually di�er. (cf. Alexander [4])

91

This definition is based on Alexander’s design patterns from architec-
ture [4], which were later popularized in software development by Gamma
et al. [69]. Using PAIP and a set of adoption patterns, the change agent
will try to reach an adoption goal.

Definition 14: Adoption Goal.
An adoption goal is a change in the adoption of a software engineer-

ing practice desired by the organization. The organization has assigned
competence to the change agent to act upon the adoption goal.

Regarding the aforementioned adoption problem documented in chap-
ter 8, adoption goals were to increase the commit frequency of developers
and to increase the length of commit messages.

As part of PAIP, the change agent uses the adoption patterns to design
a treatment:

Definition 15: Treatment.
A treatment is software that was designed or commissioned by a

change agent, deliberately instantiates adoption patterns, and is aimed
at reaching an adoption goal.

Deploying one or more treatments in an organization is a persuasive
intervention:

Definition 16: Persuasive Intervention.
A persuasive intervention is the deployment of one or more treat-

ments by — or commissioned by — a change agent, aimed at reaching
an adoption goal in a non-coercive attempt to change attitudes and /
or behaviors.

Synonyms: intervention; PAIP intervention.
(cf. Fogg et al. [62])

PAIP focuses on persuasive interventions as an alternative to mandating
behavior, as the latter is not always followed [146]. Persuasion also has other
advantages: in line with Self-determination Theory, perceived autonomy
has been shown to improve the well-being of employees, in turn improving
their creativity and productivity [6].

92

Change
Agent

Persuasive
Intervention

TreatmentAdoption
Goal

Adoption
Patterns

Organization

Adoption
Problem

designs

inform

deploys
mitigates

acknowledges

belongs to

addresses

chooses

determines

supports

realizes

instantiates

Software Engineering
Practice

uses

concerns

Figure 6.1: The defined terms and their relationships.

Fig. 6.1 provides an overview of the basic terms defined in this section.
Based on these, the following section defines the actual process.

6.2. PAIP: The Practice Adoption Improvement Process

This section introduces PAIP, the Practice Adoption Improvement Process.
PAIP consists of six steps that the change agent executes in an iterative
cycle. The process allows her to systematically create and improve per-
suasive interventions that are aimed at improving the adoption of software
engineering methods in an organization.

PAIP is inspired by the Quality Improvement Paradigm by Basili et al.
(cf. Basili et al.’s Experience Factory [11]) and Deming’s [47] Plan-Do-
Check-Act (PDCA) cycle. It is a continuous process that aims at lowering
the discrepancy between the current situation and the adoption goal with
each iteration. While PAIP can be used on its own, organizations with
other software process improvement (SPI) initiatives in place could inte-
grate PAIP into their existing e�orts.

First, I provide an overview of PAIP’s six steps:

93

1. Characterize Context: In this first step, the change agent deter-
mines the current context in which PAIP is to be applied. This en-
tails the practice for which adoption should be improved as well as
its properties, and the characteristics of the developer population.

2. Define Adoption Goal & Metrics: Using established paradigms
such as the Goal/Question/Metric method (GQM) [185], the change
agent defines the adoption goal that the intervention should be opti-
mized for. PAIP constrains the goal to a specific set of classes (see
below) to enable a mapping to concrete adoption patterns. To mea-
sure success in step 6, the change agent defines metrics. These can
also be incorporated into the treatment design, as several patterns
need metrics to provide di�erent kinds of feedback to developers.

3. Choose Adoption Patterns: In the previous two steps, the change
agent has collected the information necessary to choose the adoption
patterns that are appropriate for her context and adoption goal.

4. Design Treatment: Using the adoption patterns chosen in the pre-
vious step, the change agent can now design one or more software
applications that implement the patterns. Each adoption pattern
lists implementation examples that the change agent can use to base
her treatment on.

5. Deploy Intervention: Once the treatments have been created, the
change agent deploys them as a persuasive intervention in the orga-
nization.

6. Analyze Results: When the intervention is deployed, its e�ects can
be measured using the metrics defined in step 2. By comparing these
measurements with a baseline measurement, the intervention’s success
is assessed. This step provides data to guide the next iteration of the
process.

Fig. 6.2 provides an overview of the process. The following sections
discuss these steps in detail.

Step 1: Characterize Context

At the beginning of the process, the change agent knows about an adoption
problem related to a software engineering practice. She has already ensured

94

Characterize Context

Define Goal & Metrics

Choose Adoption Patterns

Deploy Intervention

Analyze Results

Design Treatment

1.

2.

3.

6.

5.

4.

Figure 6.2: An overview of the Practice Adoption Improvement Process.

that the problem really is related to adoption issues and is not caused by
other reasons, such as missing resources or management buy-in.

The change agent then determines key characteristics of the software
engineering practice for which adoption is to be improved and the developer
population of the organization.

The Software Engineering Practice

In the context of PAIP, a software engineering practice is characterized by
the tasks it entails. The majority of a practice’s tasks are either creative or
routine. If no clear majority can be determined, the conservative default
should be to assume creative tasks.

This is a very simplistic model, but it supports choosing suitable adoption
patterns in step 3 of PAIP. Some of the patterns use extrinsic motivators —
as such, they are only appropriate for pushing developers to try something
new, or for improving engagement with routine tasks. For creative tasks,
individuals often also have intrinsic motivators — however, adding extrin-
sic motivators to such tasks can diminish existing intrinsic motivation (cf.
chapter 3).

Determining whether a practice’s tasks are creative or routine can only
be an approximation, as the “truth” will likely vary between individuals
applying the practice. However, as a rule of thumb, routine tasks tend
to be simpler and more repetitive. This level of accuracy has so far been
su�cient for using PAIP (cf. chapter 8).

95

The Developer Population

For the developer population of the organization, PAIP uses a similarly
simple model: either some developers are already applying the practice to
a desirable degree or not. Again, this information is needed when choosing
adoption patterns in step 3. Some adoption patterns use existing adopters
as role models that other developers can learn from. Therefore, this char-
acteristic determines which adoption patterns might not be applicable.

Step 2: Define Adoption Goal & Metrics

The change agent has now determined the context in which PAIP is applied.
The second step is concerned with the goal of the intervention. The change
agent needs to answer the following questions with regard to the goal:

• What is the adoption goal?

• Which adoption goal class does the adoption goal belong to?

• Which metrics are appropriate for measuring e�ectiveness?

• When will e�ectiveness be measured?

The following sections discuss these questions in detail.

Defining the Adoption Goal

Using established paradigms such as the Goal/Question/Metric method
(GQM) [185], the change agent defines the adoption goal that the interven-
tion should be optimized for.

It has been beneficial to choose goals that are not too far from the cur-
rent adoption levels of the developer populations (cf. chapter 8). Reaching
the adoption goal should be a moderate step towards better adoption. Fur-
ther improvements can still be gained in future iterations of PAIP. This is
also in line with insights documented by Rogers [149]: reaching moderate
adoption goals first can support reaching larger adoption goals later, as
adoption is always also determined by the compatibility of an innovation
with an individual’s current practices and values. Such small steps are less
demanding on potential adopters, as adoption requires only smaller changes
in behavior.

96

A strategy that can be combined with this approach is mentioned by
Gilbert [72] and was also successfully applied in the quasi-experiment doc-
umented in chapter 8: when striving to improve the competence of an
organization’s members, the highest gains can be achieved by targeting the
worst performers. The adoption goal thus should first target those devel-
opers not using the practice at all or those using it incorrectly. Again,
later iterations of PAIP can build on such improvements to introduce more
advanced adoption goals.

Adoption Goal Classes

PAIP constrains the goal to one of two possible adoption goal classes
(cf. definition 17).

Definition 17: Adoption Goal Class.
An adoption goal’s adoption goal class determines which adoption

patterns are suitable to reach the adoption goal. It can either one or
both of the following.

• Start Adopting a New Practice: Developers are not expe-
rienced with the tasks that are needed to apply this practice and
should start applying it.

• Improve Adoption of a Known Practice: Developers have
already started using the practice, but the change agent wants to
improve how intensively they apply it. This entails increasing
quality, frequency, duration, or volume.

This simple model for categorizing the adoption goal enables a mapping
to adoption patterns in step 3 of PAIP.

To determine how di�used the practice already is, the change agent must
take a baseline measurement. Obtaining this and further measurements are
discussed next.

The Appropriateness of Metrics

To determine the degree of success for an intervention and for planning
consecutive PAIP iterations, the change agent derives metrics that measure

97

adoption — that is, the degree of practice conformance as implemented by
the developers. Again, existing methods such as GQM [185] should be used.

These metrics can also be incorporated into the treatment design, as
several adoption patterns need metrics to provide di�erent kinds of feed-
back to developers. In order to provide realtime feedback to developers,
measurements should be automated.

When using metrics for monitoring and managing software development
processes, a change agent can make several mistakes. Bouwers et al. [18]
provide an overview of typical problems, such as “Metric in a bubble” or
“Treating the metric”.

While such warnings apply, PAIP is especially concerned with the human
side of metrics — the e�ects metrics can have on developers. Several adop-
tion patterns use metrics to provide feedback, as a reward, or as a symbol
for reputation or proficiency (cf. e.g. the Leaderboard or Progress Feedback
patterns). The change agent needs to especially consider the following three
issues in this context.

• Meaning: metrics, when used as feedback or for rewards, are more
e�ective when they are perceived as meaningful by individuals [99].

• Manipulation: whenever a metric is used for rewards or to rank
individuals against each other, they may attempt to manipulate its
calculation. Campbell [24] enumerates several examples for this from
public policy setting.

• Playfulness: when a metric can have concrete, material e�ects, the
probability for it to become corrupted increases [24] — e.g. when it is
used to determine salaries or promotions. Therefore, metrics in PAIP
should be playful and have no real-world impacts (cf. also chapter 3
on the e�ect of evaluations).

Some of the adoption patterns in chapter 7 require a meaningful metric
to be available. Therefore, the change agent needs to know beforehand
whether the chosen metric is perceived as meaningful. While there is no
formula for determining meaning, a transparent calculation of the metric
and whether it reflects actual accomplishments are good indicators for es-
timating this. For validation, the change agent should communicate with
the developer population.

For example, in the quasi-experiment documented in chapter 8, my col-
leagues and I used a very simple, meaningless metric to rank developers

98

against each other: the number of commits to version control. In interviews
we conducted after the project, participants told us that they perceived the
metric as arbitrary and useless [164]. Some participants also remarked that
this metric was prone to manipulation — however, no developer actually
attempted this.

Therefore, in another iteration of the project, we would have chosen a
metric that would be more meaningful. From our experience, communi-
cating with the developer population about the chosen metrics can be a
useful tool to determine whether a metric is perceived as meaningful —
some students proposed test coverage, for example. Finally, the Review
and Meta-Review patterns can be used to conduct potentially more mean-
ingful measurements (cf. chapter 7).

Planning Measurement

Before deploying the persuasive intervention, the change agent uses the
metrics gathered so far to make a baseline measurement of the current
state of adoption. This enables her to later assess whether the intervention
was successful and, in turn, which next steps would be appropriate in future
iterations of PAIP. Ideally, the baseline measurement consists of multiple
measurements, entailing the whole period for which future measurements
are planned. Depending on the organization’s process, milestones, sprints,
iterations, or whole projects can be appropriate periods for taking measure-
ments.

Depending on the organization’s resources and the metrics’ complex-
ity, automatic measurement can enable realtime measurements. Generally,
gathering more data is better. However, change agents should refrain from
making judgements based on the data from only a short period. For all
interventions, novelty can be a facilitating factor. Therefore, to obtain re-
liable measurements, some time should be allowed to pass. Interviewing
developers from time to time may help to determine whether novelty is still
a�ecting the intervention.

Step 3: Choose Adoption Patterns

In the previous steps, the change agent has collected the following informa-
tion:

1. Is the adoption goal to start or to improve adoption for a practice?

99

2. Does the practice emphasize creative or routine tasks?

3. Are there existing adopters available that could serve as role models?

4. Is a meaningful metric available?

This information can be used to choose appropriate adoption patterns
from Table 7.1 in chapter 7. Adoption patterns are grouped by the stages
of the innovation-decision process they support. The change agent should
aim at choosing a pattern from each of the stages, so developers in all stages
can be supported. Fig. 6.3 illustrates how each pattern category supports
a specific stage or problem in the innovation-decision process.

Practice Adoption Improvement Process

Diffusion of Innovations Theory

Knowledge
Patterns

Persuasion
Patterns

Motivation
Patterns

Innovation-Decision Process

Knowledge Persuasion KA
P-

G
ap

Decision

Legend

sequence

supports

Implementation

Decision
Patterns

Implementation
Patterns

Confirmation

Supporting Patterns

Figure 6.3: The adoption pattern categories and their relationships to Di�usion
of Innovations theory.

However, the succeeding section will show that small, focused, and inte-
grated treatments are preferable to larger ones. The change agent should
therefore rather choose fewer adoption patterns than would be applicable.

Step 4: Design Treatment

Based on the adoption patterns the change agent has chosen in the previous
process step, she can now design one or more treatments that will comprise
the persuasive intervention. Each pattern contains an Examples section
— this can be used to guide the concrete implementations of the adoption
patterns.

PAIP recommends designing small, focused treatments and integrating
them with existing practices and tools. Developers should be able to con-

100

nect with each other in small-world networks so network e�ects have the
most impact. The following sections discuss these issues in more detail.

Focused Treatments

As a platform for the exploration of e�ects in social network sites, Pe-
ters [138] and Singer [163] created Hallway, an extensible social network
site. A single installation of Hallway can serve multiple client organiza-
tions, providing tailored social media features for each, and making many
di�erent data sources available for integration.

For example, members might be able to connect with each other only mu-
tually, or follow others one-sidedly. For one client, members would be able
to repost others’ content; for another one there would only be the option to
like someone else’s content. Users can integrate version control repositories,
bug trackers, and RSS feeds to generate posts in a user’s activity stream.

Through an exploratory evaluation of Hallway in a student project, we
learned that such large and capable interventions are very hard to keep ef-
fective. Users would be confused and overwhelmed by the available options.
Only very few actually discovered which data sources they could integrate.
The versatility of Hallway seemed to be hindering its adoption.

When creating Teamfeed — the intervention documented in chapter 8 —
we took the opposite approach. Teamfeed is a simple website with only a
single view: the feed of one’s team members’ commits to version control,
along with a high-score list2. Users did not have to integrate their reposito-
ries themselves, or even register for the site. This approach of low barriers
led to a satisfactory adoption of the intervention itself, resulting in an im-
provement of the software engineering practice targeted by the intervetion
(cf. chapter 8). The power of lowering barriers was also confirmed in the
study Pham et al. [140] conducted on GitHub (cf. chapter 5).

Another advantage of focused treatments lies in their development. Smaller
treatments should take less time to develop and to improve, supporting the
iterative nature of PAIP.

Therefore, PAIP recommends that the change agent focuses a treatment
on a single aspect and removes as many barriers to adoption as possible.

2also called leaderboard

101

Process & Tool Integration

According to Favre et al. [59], to ensure adoption of tools by software engi-
neers — such as our PAIP interventions — they should be integrated into
existing tools and practices. For software developers, the authors specif-
ically mention the Web, email, and integrated development environments
(IDEs). PAIP therefore recommends creating treatments as integrations
into existing web applications (such as bug trackers) or as self-contained
web applications.

We applied the latter approach successfully in the quasi-experiment doc-
umented in chapter 8. Others have integrated social features into IDEs
(e.g. Guzzi and Begel [81]) — however, depending on the organization,
the required development e�ort might be higher and portability might be
lower for IDE integration. Girgensohn and Lee [73] argue that web ap-
plications can be updated especially easily, enabling the change agent to
respond quickly to usage patterns. The change agent will need to balance
the advantages and disadvantages of these approaches individually.

Email should be used for notifications and triggers, as e.g. recommended
by the Triggers pattern (cf. chapter 8). Girgensohn and Lee [73] also
recommend using email notifications to motivate users to return to a web
application.

Sellen et al. [160] provide further insights into how knowledge workers
use the web, providing support for web- and email-based approaches. Fur-
ther, Bertram et al. [15] show that social web applications can support
communication and coordination even in co-located teams.

In the context of di�usion of innovations research, such an integrated ap-
proach increases the compatibility of interventions with existing tools and
practices, which is positively correlated with adoption. Integration into
existing tools and practices also spares developers of having to install new
software, which increases the trialability of the intervention — a character-
istic that is also positively correlated with adoption. The adoption of the
intervention — a meta-adoption in the context of PAIP — is necessary for
the intervention to have an e�ect.

Small-World Networks

Finally, the change agent should encourage and support the formation of
small-world networks through the intervention. In such networks, nodes
form clusters, and from each cluster, only a few nodes have connections

102

to other clusters. Social networks — that is, human actors and the ties
between them — as well as some other real-world phenomena are small-
world networks.

Several adoption patterns, such as Normative Behavior or Social Anchor
use social network e�ects. Various authors have shown that small-world
networks support such e�ects well. For example, Centola [26] reports on
an experiment that showed that small-world networks as compared with
other network configurations show a higher degree of what the author calls
“social contagion” — the adoption of behavior observed in one’s peers.

Goel et al. [76] specifically mention adoption e�ects in their study of
several online communities. According to the authors, adoption mostly
takes place very near the source of a behavior and does not get carried
very far between nodes. Sun et al. [175] present similar findings for popular
posts on Facebook.

To support the formation of such networks, developers should be able to
choose their connections themselves, e.g. by allowing them to “follow” each
other’s activity as proposed by the Microblog adoption pattern. Seeding
and recommendation approaches to create connections between users have
also been successful: for example, Kwan and Damian [97] show how email
archives can be used to obtain social connections that would otherwise be
hidden. Freyne et al. [65] show how recommending social connections early
can increase engagement with a social network site.

Step 5: Deploy Intervention

The change agent now deploys the persuasive intervention in the organi-
zation. While this may entail technical tasks like provisioning computing
resources or organizational duties such as obtaining permission from su-
periors, those activities are outside this thesis’ scope. The change agent
communicates to developers how the intervention will a�ect them and how
it can help them improve their practice adoption.

Step 6: Analyze Results

When the intervention is deployed, the change agent measures its e�ects
using the metrics she defined before, comparing these measurements against
the baseline and the adoption goal. She uses the periods defined in step 2
to time such comparisons.

103

From our experience (cf. chapter 8), qualitative insights into the percep-
tions of an interventions can be valuable for guiding intervention improve-
ments as well. The LID approach [156] is a very light-weight technique to
conduct such investigations.

When the change agent has assessed the e�ects of the intervention, she
can use the next PAIP iteration to either correct problems, to introduce
further improvements to the adoption of the chosen software engineering
practice, or focus it on another practice. As Thom et al. [178] argue, novelty
e�ects could be used by constantly introducing change in the intervention.

6.3. Summary

This chapter presented PAIP, the Practice Adoption Improvement Process.
By deriving the adoption context, an adoption goal, and accompanying
metrics, the change agent is enabled to choose adoption patterns suited
for the adoption problem. Using the adoption patterns, the change agent
designs a treatment and deploys it as a persuasive intervention. The change
agent then uses the metrics defined before to measure the e�ectiveness of
the intervention. With this information, the change agent can then adapt
the intervention to become more e�ective in improving the adoption of the
chosen software engineering practice — starting the process anew.

However, a crucial part of the process is still missing: the adoption pat-
terns that guide the design of the treatments. The next chapter presents
them in detail.

104

7. A Catalog of Adoption Patterns

The previous chapter introduced a process called PAIP for improving the
adoption of software engineering practices. To do so, step 3 of PAIP requires
a change agent to choose adoption patterns (cf. definition 13) that match
with the adoption problem, the adoption goal, the software engineering
practice for which adoption should be improved, and the developer popu-
lation. This chapter first documents the stages of the innovation-decision
process supported by the available adoption patterns. It then reports on the
procedure that was used to derive adoption patterns, and then documents
the patterns themselves.

7.1. Introduction

The goal of applying PAIP is supporting the innovation di�usion process to
facilitate the adoption of practices. It is therefore guided by the innovation-
decision process for individuals. However, as mentioned in chapter 6, PAIP
is concerned with adoption issues in organizations. As shown in chapter 2,
in this case the innovation process for organizations is important to consider
as well. It entails the following stages:

1. Agenda-Setting: The organization identifies and prioritizes needs and
problems that could be addressed by adopting an innovation.

2. Matching: The problem identified in the previous stage is matched
with an innovation could solve it.

3. Redefining / Restructuring: The organization customizes the innova-
tion according to its own structure, culture, and needs.

4. Clarifying: Use of the innovation is starting to di�use in the organi-
zation. The meaning of the innovation becomes clearer for the orga-
nization’s members, and they start forming a common understanding
of it.

5. Routinizing: The innovation loses its distinct quality; it is now part
of the organization.

105

PAIP assumes that the software engineering practice to adopt has al-
ready been researched and decided upon by the organization. Therefore,
the clarifying and routinizing stages (printed bold above) are relevant. In
these stages, individual members of the organization adopt the practice.
To support these stages, PAIP refers to the innovation-decision process for
individuals which is again summarized below.

1. Knowledge: An individual becomes aware of an innovation and gains
knowledge about how to apply it. Mass media and interpersonal
networks serve as communication channels in this stage.

2. Persuasion: The individual forms an attitude towards the innova-
tion. This is influenced by the properties of the innovation, by the
opinions of peers, and several other factors.

a) KAP-gap: Even if an individual has enough knowledge about
an innovation and has formed a favorable attitude towards it,
adoption is not guaranteed. At this point in the innovation-
decision process, research has identified the KAP-gap (cf. chap-
ter 2) that keeps many innovations from being adopted.

3. Decision: At the decision stage, the individual takes steps to start
using the innovation or abandons it.

4. Implementation: The individuals starts using the innovation.

5. Confirmation: As long as an individual has adopted an innovation,
she will constantly monitor whether it still makes sense to keep doing
so — sometimes deciding to abandon the innovation, e.g. if a new in-
novation appears that can solve the same problems in a more e�cient
or e�ective manner.

This thesis’ approach supports stages 1 through 4 (printed bold above)
and helps mitigating the KAP-gap (2.a). Fig. 7.1 illustrates this relation-
ship.

As chapter 2 has argued, a lack of motivation can increase the likelihood
of an individual to stop their adoption after the persuasion stage — in the
KAP-gap. The following sections will therefore use knowledge, persuasion,
motivation, decision, and implementation as the categories for the adoption
patterns. This results in a list of patterns for each stage of the innovation-
decision process that PAIP supports.

106

Innovation Process of Organizations

Individual Innovation-Decision Process

1. Knowledge 2. Persuasion 3. Decision 4. Implementation 5. Confirmation

1. Agenda-Setting 2. Matching 3. Redefining /
Restructuring 4. Clarifying 5. Routinizing

Decision
1. Initiation 2. Implementation

KAP-gap

Figure 7.1: The stages of the innovation process for organizations and the
innovation-decision process for individuals. When the organization is in the Clar-
ifying or Routinizing stages, the individual innovation-decision process becomes
relevant. Stages supported by PAIP are printed bold.

7.1.1. Procedure

The adoption patterns presented later in this chapter were derived from a
broad literature review. The goal was to find solutions to adoption prob-
lems that can influence individuals in the aforementioned stages of the
innovation-decision process without changing the software engineering prac-
tice itself (cf. section 1.3). To obtain a list of such solutions, the literature
review was conducted across several fields, such as psychology, sociology,
software engineering, CSCW, and human-computer interaction. Because
of the necessary breadth of this review, conducting a systematic literature
review (as e.g. proposed by Kitchenham [92]) was not appropriate.

To find applicable literature, a range of keywords was used during searches
in di�erent repositories1. The author contacted experts in the respective
sub-fields2 and inquired to them about further applicable literature. In
addition, references used by the literature found so far were used to dis-
cover more relevant research results. After this process, the list of possibly
relevant results consisted of 634 publications.

1Google Scholar, the ACM Digital Library, IEEE Xplore, and the local university’s
library.

2E.g. social media for software engineering, gamification, or the psychology of moti-
vation.

107

This list of publications was then scrutinized for their applicability to
improving adoption. Open and selective coding (cf. e.g. Strauss and
Corbin [170]) were used to find commonalities in these publications and
to cluster them into related problems and solution approaches. At this
point, the pattern form was decided upon, as abstract cores around solu-
tions became identifiable while the concrete implementations di�ered.

This process resulted in 54 adoption patterns that were then assigned to
the di�erent stages of the innovation-decision process. This assignment was
based on the needs of potential adopters in each of the stages (cf. chapter 2)
and the potential e�ects of the adoption patterns. This list of patterns was
then further reduced to 24 entries by removing overly specific and overly
general ones. Only those adoption patterns were kept that are specific
enough to enable a change agent to implement the pattern in a treatment,
yet general enough to result in di�erent implementations for each use in an
intervention.

Upon finalization of this list of 24 adoption patterns, another keyword
search for each pattern was conducted to find more related research results
to include in the patterns. This additional information guides change agents
in implementing the patterns, and facilitates a more thorough discussion of
each pattern’s theoretical background.

Finally, properties of adoption patterns were extracted that guide a
change agent when deciding for a list of patterns to implement in their spe-
cific situation. These properties are used in PAIP’s step 3 and are shown
in Table 7.1 at the end of this section.

Certain phrasings appear in multiple patterns when discussing similar
principles. This repetition is a conscious choice: each pattern should be
comprehensible on its own.

7.1.2. Pattern Format

To provide a consistent appearance, each pattern conforms to the following
format.

Pattern Name

A pattern’s name is a short phrase describing the solution the pattern
proposes. It is often reduced to an adjective and a noun.

108

Problem: Which adoption problem does this adoption pattern solve?

Solution: What is the solution to the problem?

Rationale: How and why does this adoption pattern work?

Discussion: How does this adoption pattern fit into larger theories?

Prerequisites: Which prerequisites are necessary to apply this adoption
pattern?

Examples: What are successful applications of this adoption pattern? The
change agent can use these examples of successful instantiations of the
pattern to base their own intervention on.

Related Adoption Patterns: Which other adoption patterns are related
to this one, and how?

A consistent format for all adoption patterns improves readability, makes
comparisons easier, and helps existing patterns serve as examples for others
wishing to propose new patterns.

7.1.3. Limitations

All adoption patterns are based both on established theoretical frameworks
as well as peer-reviewed empirical studies and evaluations. Nevertheless,
there are several limitations.

• Adoption patterns that were evaluated with individuals that are not
software developers, with student developers, or with open source
developers might not be transferable to developers in companies.

• Adoption patterns that were evaluated with developers in specific
companies might not be transferable to other companies, as company
culture can vary widely [6].

• Adoption patterns that were evaluated in public virtual communi-
ties might not be transferable to companies. Results may even di�er
between di�erent virtual communities [114].

109

• Adoption patterns that were evaluated targeting individuals from a
western culture might not be transferable to other cultures. Henrich
et al. [85] show that WEIRD societies — “Western, Educated, Indus-
trialized, Rich, and Democratic” — are outliers relative to the entire
human race. Yet, most scientific studies investigate subjects from
these societies.

The adoption patterns documented in this thesis have been evaluated in
one or more situations before, most of them with subjects from individu-
alistic, Western societies. This indicates that they may work similarly in
other situations with subjects from similar societies. However, it cannot
be guaranteed that the adoption patterns have the expected results in any
situation. Change agents need to be aware of this fact when evaluating
PAIP for use in their own contexts. The iterative nature of PAIP alleviates
this shortcoming to a degree, giving change agents an explicit opportunity
to fine-tune their interventions to their specific situations.

Finally, I evaluated an early version of PAIP and a subset of the patterns
in a student project (cf. chapter 8). Even though more extensive evalua-
tions are desirable in almost any research project, further evaluations of the
derived adoption patterns were not possible in the scope of this thesis.

7.1.4. Overview

Table 7.1 provides an overview of all adoption patterns that were derived
through the aforementioned process. Apart from the pattern name and
the section where it can be found in this thesis, the table shows for which
adoption problems a pattern is suitable and which requirements apply.

Some patterns use extrinsic motivators. As will be discussed in the pat-
tern descriptions themselves, these should only be used for starting practice
adoption or for intensifying the use of a routine practice. To make this dis-
tinction clear in table 7.1, some checkmarks have a corresponding footnote
attached3.

3Uses extrinsic motivators — use only to start creative tasks.

110

suitable for requires

Pattern Section S
t
a

r
t
i
n

g
A

d
o

p
t
i
o

n

I
m

p
r
o
v

i
n

g
A

d
o

p
t
i
o

n

C
r
e
a

t
i
v

e
T

a
s
k

s

R
o

u
t
i
n

e
T

a
s
k

s

E
x

i
s
t
i
n

g
A

d
o

p
t
e
r
s

M
e
a

n
i
n

g
f
u

l
M

e
t
r
i
c

Knowledge Stage

Mass Medium 7.2.1 X X X X
Microblog 7.2.2 X X X X X

Voice for Help 7.2.3 X X X X X
Reputation for Help 7.2.4 X X X X X X

Persuasion Stage

Normative Behavior 7.3.1 X X X X X
Social Anchor 7.3.2 X X X X X X

Peer Recommender 7.3.3 X X X X X
Motivation: KAP-gap

Triggers 7.4.1 X X X X
Potential Value 7.4.2 X X X X X

Appreciation 7.4.3 X X X
Reputation for Adoption 7.4.4 X X X3 X X

Points & Levels 7.4.5 X X X3 X X
Leaderboard 7.4.6 X X X3 X X

Relative Ranking 7.4.7 X X X X
Decision Stage

Challenge 7.5.1 X X X X
Embrace Examples 7.5.2 X X X X

Incremental Engagement 7.5.3 X X X X
Implementation Stage

Progress Feedback 7.6.1 X X X X
Performance Feedback 7.6.2 X X X X

Supporting

Tuned Activity 7.7.1 X X X X X
Review 7.7.2 X X X X

Meta-Review 7.7.3 X X X X
Automatic Badges 7.7.4 X X X3 X X

Peer Badges 7.7.5 X X X X

Table 7.1.: An overview of the suitability and requirements for all adoption pat-
terns.

111

7.2. Knowledge Stage

This section describes adoption patterns that can support the knowledge
stage: the first stage of the innovation-decision process. Developers that
are in this stage do not yet have the knowledge necessary to apply the
practice. The patterns show how such knowledge can be communicated
using interventions.

7.2.1. Mass Medium

Problem: Developers lack awareness or how-to knowledge for a software
engineering practice.

Solution: Actively distribute knowledge about the practice to developers.

Rationale: To apply a practice, awareness and how-to knowledge are es-
sential [149]. Actively distributing it is an e�ective way to inform develop-
ers [140].

Discussion: The active distribution of how-to knowledge is an impor-
tant instrument used by change agents [149]. Mass media, as a channel
in Rogers’ model of innovation di�usion, are fast and e�cient in creating
awareness knowledge [149].

Prerequisites: None known.

Examples: In their study of developers on GitHub, Pham et al. [140]
report that actively communicating what kinds of tests a project requires
helps potential contributors to make more desirable pull requests.

Related Adoption Patterns: Can use a Microblog as its channel.

7.2.2. Microblog

Problem: Knowledge about how to apply a software engineering practice
does not di�use su�ciently between developers.

112

Solution: Let developers connect with each other on an internal microblog-
ging service.

Rationale: Microblogs can improve the di�usion of knowledge inside orga-
nizations [147], especially by creating weak links [78] that di�use knowledge
between otherwise isolated communities [32].

Discussion: Interpersonal networks play an important role in persuad-
ing individuals to accept new ideas [149] (cf. section 7.3). Beyond that,
the presence of weak ties to other communities — e.g. other teams or
departments — is important to spread awareness and how-to knowledge
further [149, 32].

Prerequisites: Some developers must already have how-to knowledge about
the software engineering practice.

Examples: Riemer et al. [147] report on a study on successful enterprise
microblogging, finding that it is used for information sharing, mutual help,
and coordination.

Related Adoption Patterns: To use the Microblog for the Persuasion
stage, consider the Normative Behavior pattern.

7.2.3. Voice for Help

Problem: Developers need to learn about the high-level concepts for a
practice.

Solution: Provide a space for developers to publish experience reports.

Rationale: High-level concepts — principles knowledge — can support the
adoption of a practice [149]. Having accepted peers publish this knowledge
can communicate concepts and values to novices [140].

113

Discussion: Principles knowledge helps understanding how and why an
innovation works. While it is possible to adopt an innovation without
such knowledge, adoption interventions are more likely to have sustainable
e�ects when individuals have principles knowledge [149]. Because of their
influence and large interpersonal networks, opinion leaders are instrumental
in di�using knowledge about an innovation [149].

Prerequisites: Some developers must already be applying the practice.

Examples: Open source developers use blogs to communicate high-level
concepts relevant to their development experiences, prompting exchanges
with other developers [133].

Related Adoption Patterns: Encourage developers to publish their re-
ports by explicitly giving Reputation for Help.

7.2.4. Reputation for Help

Problem: Developers have how-to knowledge that would help other users
adopting the practice, but they do not publish it.

Solution: Encourage developers to publish their experiences by explicitly
awarding them reputation for doing so.

Rationale: Awarding reputation in the form of explicit points or badges
can motivate developers to share their knowledge with peers [48, 116, 111].

Discussion: Reputation is an extrinsic motivator: it is external to the
activity to be motivated. Extrinsic motivators have been shown to be hard
to sustain over time [44]. However, they can be appropriate for jumpstarting
the adoption of a previously unknown practice [149]. Campbell [24] warns
that if such measures have real implications — e.g. promotions or changes
in salary — their playful nature is removed and the measure is likely to be
corrupted (e.g. by manipulation). Sylwester and Roberts [176] show that
reputation supports cooperative activities.

114

Prerequisites: Extrinsic rewards like reputation points or badges need to
have a meaning that is accepted in the community [99] — in this case,
the developer population. Halavais [82] as well as Hamari and Eranti [83]
provide guidelines on the e�ective design of badges.

Examples: Stack Overflow, a question & answer site for developers, uses
this pattern very successfully [116].

Related Adoption Patterns: Both Automatic Badges and Peer Badges
suggest strategies for implementing this pattern. Reputation for Adoption
is a pattern that uses a similar mechanism, but with a di�erent goal.

7.3. Persuasion Stage

Being aware of a practice and knowing how to apply it is not su�cient to
adopt it. First, a developer must become willing to try it. This section
describes adoption patterns that can support developers in this persuasion
stage. Here, the availability of how-to knowledge is an implicit prerequisite
for all patterns.

7.3.1. Normative Behavior

Problem: Some developers are using the practice to a satisfactory degree,
some are not. The goal is for more developers to start applying the practice
or to start applying the practice to a more satisfactory degree.

Solution: Make explicit what normative behavior should be by continu-
ously publishing the behavior of developers, positively emphasizing desir-
able behavior.

Rationale: Most people wish to act according to social norms and take
cues from their environment to find out what is considered normal among
their peers. This forms one of the bases of social learning theory [9] and
has been confirmed in studies and experiments [22, 64].

115

Discussion: According to Rogers [149], individuals are more likely to try
and adopt an innovation when they can perceive that others — especially
opinion leaders — have adopted the innovation. In Rogers’ terms, this
pattern improves the observability of the practice. Visible acceptance of an
innovation among one’s peers also provides cues regarding its compatibility
with one’s belief system. Both properties are related to increased adoption
of innovations [149].

Prerequisites: The software engineering practice must either produce dis-
tinct activities or distinct events must have been derived from the practice if
it consists only of continuous activities. This allows activity to be explicitly
posted, e.g. on a Microblog.

Examples: Chapter 8 reports on a quasi-experiment in which we used a
newsfeed displaying commit messages. Commits with messages appeared
normal, while commits without messages displayed “No commit message
given” in red. In the experiment, students were more likely to enter com-
mit messages than the control group. Sukumaran et al. [173] show that
the behavior of commenters on web sites can determine the behavior of
subsequent commenters.

Related Adoption Patterns: A Social Anchor uses a similar mechanism,
but works with aggregated behavior. Triggers can direct developers’ at-
tention on normative behavior. Tuned Activity moderates the amount of
updates a developer receives.

7.3.2. Social Anchor

Problem: Some developers are using the software engineering practice to
a satisfactory degree, some are not. More developers should start using the
practice.

Solution: Display an aggregated measurement to developers that repre-
sents the degree of compliance with a software engineering practice. State
that this measurement is the value recorded for the developer’s peers and
ensure that it is a desirable value. Compare this value with the developer’s

116

own value. Add a value judgement containing approval or disapproval of
the developer’s performance with regard to her peers.

Rationale: Most people wish to act according to social norms and take
cues from their environment to find out what is considered normal among
their peers. This forms one of the bases of social learning theory [9] and
has been confirmed in several studies and experiments [154, 14]. Schultz
et al. [158] find that messages of social approval and disapproval can im-
prove compliance for non-compliers and can keep it stable for those already
complying.

Discussion: Individuals are more likely to try and adopt an innovation
when they can perceive that others have adopted the innovation [149]. Vis-
ible acceptance of an innovation among one’s peers provides cues regarding
its compatibility with one’s belief system. Both properties are related to
increased adoption of innovations [149].

Prerequisites: It must be possible to express a desirable aspect of the
software engineering practice as an aggregation (e.g. test coverage for im-
proving the adoption of unit testing). Some developers must already be
applying the metric in desirable quality.

Examples: Salganik et al. [154, 155] report on experimental studies in
which they manipulate the perceived popularity of music by displaying
download counts for songs. The authors find that popularity determines
success, while the actual quality of the music has a lesser influence.

Related Adoption Patterns: This pattern is related to Normative Behav-
ior: it uses similar mechanisms, but displays behavior in aggregation.

7.3.3. Peer Recommender

Problem: Developers with low proficiency in a practice are not su�ciently
exposed to developers with high proficiency in the practice.

Solution: Recommend similar and more proficient peers to less proficient
developers.

117

Rationale: Individuals that are perceived to be similar to a person are
more persuasive than others [62]. Ties with others can support and influ-
ence individuals in adopting an innovation [149]. Similar, yet more profi-
cient developers should thus be able to positively influence another devel-
oper with regard to their adoption of a practice.

Discussion: Authorative figures, such as experts and opinion leaders, can
support the di�usion of an innovation with their heightened influence over
their peers [149]. Accordingly, suggesting such ties can support the adoption
of a practice.

Prerequisites: Developers more proficient in the practice than the tar-
geted developers must be available.

Examples: Guzzi and Begel [81] report on their CARES tool, which helps
developers to find experts on a certain piece of source code. Damian et
al. [40] discuss Requirements-centric Social Networks that can help finding
experts in requirements engineering tasks.

Related Adoption Patterns: This pattern can be combined with Mi-
croblog or Normative Behavior by suggesting connections between devel-
opers. Used alone, it can e.g. suggest experts on specific artefacts as
demonstrated by Guzzi and Begel [81].

7.4. Motivation: Overcoming the KAP-gap

Even when they are able to apply a practice and have a favorable attitude
towards it, some individuals will not adopt it — this is called the KAP-
gap [149]. As chapter 2 has argued, motivation can play a role in this
process. This section describes adoption patterns that can support the
motivation of developers for overcoming the KAP-gap.

7.4.1. Triggers

Problem: Developers are able to apply a practice, but do not do so at all
or not frequently enough.

118

Solution: Use notifications to cue developers to applying a practice by
directing their attention to a task related to the practice. To support
motivation, associate triggers with positive feedback or a goal to be reached.
Do not overload developers with triggers.

Rationale: According to Fogg’s behavior model [63], ability and motiva-
tion are not enough to enact a behavior — in addition, a trigger is needed.
Positive feedback that is informational rather than controlling [44] as well
as clear, challenging goals [108] both support motivation. Dynamically ad-
justing notifications can avoid information overload [190]. The e�ect may
wear o� relatively quickly [2].

Discussion: Fogg [63] distinguishes three kinds of triggers: those sup-
porting motivation, those improving perceived ability, and pure reminders.
While reminders are important in software development to lower the cog-
nitive load [135], this pattern suggests using motivational triggers so that
only ability is a prerequisite. Rogers agrees that such a cue-to-action can
serve to close the KAP-gap [149].

Prerequisites: Developers already have the ability to apply the software
engineering practice.

Examples: Abdolrasulnia et al. [2] used email reminders to trigger desired
behavior in physicians.

Related Adoption Patterns: This pattern can support many other pat-
terns by making their implementation more salient. E.g., Triggers can be
used to remind developers of a Challenge or to notify them of an Appreci-
ation.

7.4.2. Potential Value

Problem: Developers cannot see the value in a practice. This decreases
frequency or quality of their application of the practice.

Solution: Provide developers with feedback on the value their application
of the practice could produce for others.

119

Rationale: Individuals are motivated by meaningful work. Having a pos-
itive impact on others supports perceiving a task as meaningful [6].

Discussion: Individuals are reluctant to adopt preventive innovations —
those that promise to avert an undesirable future event —, as their value
is not immediately visible or might never materialize. Therefore, the KAP-
gap is often found for preventive innovations [149]. Many software engineer-
ing practices are preventive: e.g., documentation is supposed to support
future maintenance, and decoupling systems is supposed to make future
integrations easier. Lavallée and Robillard [102] report that the absence
of value feedback in many requirements of software process improvement
(SPI) initiatives can be detrimental to developer motivation, as the process
changes create no directly perceivable improvements. This is related to the
fact that SPI only becomes valuable after some time [102]. Therefore, when
providing value feedback, rough estimates might be preferable to no value
feedback at all (cf. Rashid et al. [143]).

Prerequisites: The value of a contribution must be estimable for the soft-
ware engineering practice.

Examples: In a study on experience sampling, Hsieh et al. [86] show that
feedback on the value of an individual’s e�orts can increase contributions.
Rashid et al. [143] show similar e�ects for an online community, di�erenti-
ating several alternative designs for estimating value.

Related Adoption Patterns: Depending on the adoption problem, a dif-
ferent kind of feedback may be more suitable. Progress Feedback and Per-
formance Feedback provide alternatives.

7.4.3. Appreciation

Problem: Developers have adopted a practice to a degree, but its appli-
cation is not intensive or frequent enough.

Solution: Enable developers to appreciate each other’s work in a visible
and persistent manner.

120

Rationale: Concrete and sincere appreciation from peers can improve an
individual’s motivation with regard to a task [6]. Automatic appreciation
— messages generated by a computer program — do not mean as much as
that given by a human being [122].

Discussion: This pattern should support the motivational needs of com-
petence and relatedness and would therefore lead to higher motivation with
regard to the practice [44].

Prerequisites: There must be consumers of the results of applying the
practice who will have a reason to appreciate these results.

Examples: On the developer profile aggregator Coderwall, developers can
endorse each other. In a study by Singer et al. [162], developers reported
enjoying this recognition of their development skills by others. Cheshire
and Antin [28] manipulated a banner on a website to thank users, resulting
in more contributions from these users.

Related Adoption Patterns: Triggers can be used to notify developers of
appreciation, directing their attention to this positive feedback.

7.4.4. Reputation for Adoption

Problem: Developers are not applying the practice at all or not frequently
enough.

Solution: Encourage developers to apply the practice by explicitly award-
ing them reputation for doing so.

Rationale: Awarding reputation in the form of explicit points or badges
can motivate developers to try out a practice or to apply it more often [162,
48, 116].

Discussion: Reputation is an extrinsic motivator: it is external to the
activity to be motivated. Extrinsic motivators have been shown to be hard
to sustain over time [44]. However, they can be appropriate for jumpstarting
the adoption of a previously unknown practice [149]. Alternatively, this

121

pattern can be used to motivate routine activities — for these, extrinsic
motivators do not interfere with intrinsic motivators [44]. Campbell [24]
warns that if such measures have real implications — e.g. promotions or
changes in salary — their playful nature is removed and the measure is
likely to be corrupted (e.g. by manipulation). Sylwester and Roberts [176]
show that reputation supports cooperative activities.

Prerequisites: Extrinsic rewards like reputation points or badges need to
have a meaning that is accepted in the community [99] — in this case,
the developer population. Halavais [82] as well as Hamari and Eranti [83]
provide guidelines on the e�ective design of badges.

Examples: According to Casalo et al., reputation is an important moti-
vator in open source development [25].

Related Adoption Patterns: Both Automatic Badges and Peer Badges
suggest strategies for implementing this pattern. Reputation for Help is a
pattern that uses a similar mechanism, but with a di�erent goal.

7.4.5. Points & Levels

Problem: Developers have not yet started applying the practice or a rou-
tine activity that is already being applied should be intensified.

Solution: Award points and levels for the activity that is to be started or
intensified. Provide a space for users to display their points and levels, e.g.
on a user profile. Give clear instructions on how to attain di�erent levels.

Rationale: Extrinsic motivators — even intangible ones like points or lev-
els — are appropriate for jumpstarting a new behavior and for motivating
routine work [44]. The public display of points and levels can make devel-
opers feel proud for their achievements [162]. Transparent goals are more
likely to motivate individuals [108].

Discussion: Points and Levels are very extrinsic motivators — that is,
individuals will carry out the activity not for its own sake, but to obtain a
reward. Extrinsic motivators have been shown to be hard to sustain over

122

time [44]. However, they can be appropriate for jumpstarting the adoption
of a previously unknown practice [149]. Alternatively, this pattern can be
used to motivate routine activities — for these, extrinsic motivators do
not interfere with intrinsic motivaton [44]. Yet, in all cases it is important
to only reward activities that should really be intensified, and in exactly
the desired quality. Otherwise, e.g. if only quantitiy is rewarded, quality
can su�er — as it would not be instrumental in obtaining the reward (cf.
Thom et al. [178]). Campbell [24] warns that if such measures have real
implications — e.g. promotions or changes in salary — their playful nature
is removed and the measure is likely to be corrupted (e.g. by manipulation).

Prerequisites: A metric that quantifies the activity that is to be moti-
vated. Ideally, the metric cannot be manipulated by developers who wish
to gain more points.

Examples: Farzan et al. [58] report on an enterprise social network site
in which points and levels were awarded for posting comments and other
activities. This intervention increased activity. Thom et al. [178] later
report on the removal of these mechanisms from the site, resulting in a
significant decrease in activity — especially regarding nonsense comments.
Montola et al. [123] added an achievement system to a photo sharing site,
resulting in friendly competition, yet also some concerns from users who
believed that the achievements might motivate undesirable behavior.

Related Adoption Patterns: Based on Points & Levels, a Leaderboard
can be used to rank developers against each other, creating an explicit
competitive situation.

7.4.6. Leaderboard

Problem: Developers have not yet started applying the practice or a rou-
tine activity that is already being applied should be intensified.

Solution: Use a metric that measures compliance with the software en-
gineering practice to rank developers against each other, creating explicit
competition. If possible, let groups compete against each other instead of
individual developers against each other.

123

Rationale: For some populations, competition is a strong motivator, lead-
ing to improved performance and higher perseverance [177]. Group a�lia-
tion positively influences achievement motivation [189].

Discussion: Competition can be an e�ective motivator for populations
that are interested in challenges, strive to increase their own competence,
and strive to outperform others [177]. Winning increases motivation by
increasing perceived competence [144]. However, a pressured context can
decrease motivation by diminishing perceived self-determination [144]. As
reported by Deci et al. [45], for populations without the above character-
istics, competition can also decrease motivation. As losing at least has no
positive e�ects on motivation [144], groups of developers should be ranked
in separate lists that match their respective competence levels [117, 89].

Prerequisites: A metric that quantifies the activity that is to be moti-
vated. Ideally, the metric cannot be manipulated by developers who wish
to improve their ranking. To obtain desirable results, the developer pop-
ulation must have competitive characteristics and the competition context
must not be controlling (cf. Discussion).

Examples: Chapter 8 reports on a quasi-experiment in which we used a
Leaderboard to rank students according to their number of commits to
version control. Students in the treatment group committed significantly
more often than those from the control group. According to the German
airline pilots association Vereinigung Cockpit e.V., the airline Ryanair uses
a leaderboard to rank pilots by their kerosene savings [187]. As this was
used to coerce pilots into using less fuel, pilots reported feeling psycholog-
ical pressure and risking emergency landings [187]. This illustrates that
a controlling or pressuring competitive context can lead to dysfunctional
results.

Related Adoption Patterns: Points & Levels can be used as the metric
to rank developers.

124

7.4.7. Relative Ranking

Problem: Developers have not yet started applying the practice or a rou-
tine activity that is already being applied should be intensified.

Solution: Use a metric that measures compliance with the software engi-
neering practice to rank developers against each other. Only show individ-
ual developers their relative ranking as compared to all other developers,
creating an anonymous form of competition.

Rationale: For some populations, competition is a strong motivator, lead-
ing to improved performance and higher perseverance [177]. However, open
competition can have several undesirable side e�ects (cf. Leaderboard adop-
tion pattern). Competing against an aggregated, anonymous metric (“you
are in the top 5%”) can eliminate some of these drawbacks.

Discussion: Competition can be an e�ective motivator for populations
that are interested in challenges, strive to increase their own competence,
and strive to outperform others [177]. Open competition can have several
drawbacks, however. As Wilson and Sell [193] show, too much informa-
tion about others’ past behavior can be detrimental to contribution levels.
Cheshire and Antin [28] show that relative rankings do not su�er from these
e�ects. Also cf. with the Discussion of the Leaderboard adoption pattern.

Prerequisites: A metric that quantifies the activity that is to be moti-
vated. Ideally, the metric cannot be manipulated by developers who wish
to improve their ranking. To obtain desirable results, the developer pop-
ulation must have competitive characteristics and the competition context
must not be controlling (cf. Discussion).

Examples: Cheshire and Antin [28] report on an experiment in which rel-
ative ranking was successfully used to increase contributions from members
of an online community.

Related Adoption Patterns: Compared to the Leaderboard pattern, a Rel-
ative Ranking removes some of the potentially damaging side e�ects of open

125

competition. Similar to the Social Anchor, information about others’ be-
havior is presented in an aggregated form. However, the Relative Ranking
frames the interaction as competitive, whereas the Social Anchor has a
normative framing.

7.5. Decision Stage

In the decision stage, developers know about the practice, have a favorable
attitude towards it, and are motivated to apply it. To further reduce un-
certainty, they will now try the practice, possibly on a probationary basis.
The adoption patterns in this category support them in this stage.

7.5.1. Challenge

Problem: Developers are not improving their adoption of a software en-
gineering practice.

Solution: Provide developers with explicit, attainable, and challenging
goals. Make sure developers understand what the conditions for attaining
the goal are and give explicit feedback on results. Prefer challenges that
require the developer to learn something new over those that merely require
reaching a certain performance as measured by a metric.

Rationale: Providing individuals with clear and challenging, yet attain-
able goals can prompt them to reach these goals and increases their per-
formance with regard to the goals [108]. Learning goals are more e�ective
than performance goals [113, 53].

Discussion: In the persuasion stage, individuals need to be prompted to
try out an innovation [149]. Goal-setting can provide this prompt. Clear
feedback and a sense of achievement have a positive influence on motiva-
tion [108] and will thus help individuals avoiding the KAP-gap.

Prerequisites: A set of goals with the above qualities must be available
or be derived for the software engineering practice.

126

Examples: Zhu et al. [197] show that goal-setting improves the perfor-
mance of editors on Wikipedia. In studies of two manipulated collabora-
tion systems, Jung et al. [88] demonstrate that clear goals and feedback can
enhance performance. Ling et al. [107] manipulated an online movie rec-
ommender website and found that specific and challenging goals prompted
individuals to contribute.

Related Adoption Patterns: Support this pattern by giving developers
Progress Feedback. Automatic Badges or Peer Badges can act as symbols
for completing a Challenge.

7.5.2. Embrace Examples

Problem: Developers are not using a practice because they do not know
how to begin, or they are applying the practice in an incorrect or deficient
manner.

Solution: Display examples prominently and make them easily accessible
and customizable. Explain how they work and why they are good examples.
Emphasize that using examples is desired.

Rationale: Developers learn best practices from existing examples and
customize them for their needs [140]. Explanations help in understanding
the examples and may support the application of the contained principles
in future tasks [127]. Since developers may disregard example usage as
a bad practice [10, 75], they need to be an o�cially accepted practice in
development and may at times be preferable to other alternatives [75].

Discussion: Examples increase the perceived trialability of a software en-
gineering practice [140]. Trialability is positively correlated with adop-
tion [149].

Prerequisites: Examples for how the practice is to be applied must be
available.

127

Examples: Projects on GitHub can support new contributors by having a
clearly named folder for tests. Users of GitHub report that they use those
existing tests as examples and customize them to write their own tests [140].
Answers on the question & answer site Stack Overflow often contain exam-
ples. These are most useful when they contain an explanation [127].

Related Adoption Patterns: Examples and their use can be promoted
using the Microblog and Voice for Help adoption patterns.

7.5.3. Incremental Engagement

Problem: Developers do not apply the practice at all, or do not apply it
as frequently or intensively as desired.

Solution: Tailor the available tasks to the current level of a developer’s
proficiency. Suggest these tailored tasks to the developer.

Rationale: Individuals are motivated most by tasks that match or slightly
exceed their current abilities [108]. Directing an individual’s attention to
behavior that they are motivated to enact and that matches their abilities
can support them in actually adopting the behavior [63]. Kim [91] as well
as Preece and Shneiderman [141] show how segmenting online communi-
ties into five respectively four classes and subsequently tailoring tasks can
improve contributions and engagement.

Discussion: Because of their personality traits and abilities, individuals in
di�erent adopter categories (innovators, early adopters, etc.) will respond
to di�erent kinds of motivators [149]. Personalizing the adoption process
supports developers of di�erent proficiency levels in adopting a practice.

Prerequisites: A segmentation of the developer population that consists of
developer groups with distinct proficiency levels and support requirements.
This segmentation then guides the creation of tailored tasks to be suggested
to the members of the respective groups.

128

Examples: López et al. [110] successfully used this pattern in an online
community for academic conferences, increasing contributions by its mem-
bers.

Related Adoption Patterns: This pattern is a combination of the Chal-
lenge and Triggers patterns. In addition, it employs a personalization strat-
egy to match the di�erent segments of the developer population.

7.6. Implementation Stage

The adoption patterns in this category support software developers in the
implementation stage. In this stage, developers are starting to put the
software engineering practice to use in their daily work. The following
patterns further reduce any uncertainty about whether an individual is
applying the practice correctly by giving di�erent kinds of feedback.

7.6.1. Progress Feedback

Problem: The frequency or persistence of developers’ application of a
practice are not satisfactory.

Solution: Provide developers with positive feedback on the progress they
are making in their application of the practice.

Rationale: Feedback on progress can motivate individuals to reach a goal [108].

Discussion: Feedback on progress enables individuals to adjust their ef-
forts and strategies to reach a goal faster or more e�ciently [108]. Arti-
ficially increasing the perceived progress can lead to greater persistance,
increases the likelihood of completing the task, and decreases the time re-
quired for task completion [129, 93]. Sach and Petre [152] document a
study suggesting that positive feedback has positive e�ects on software en-
gineers’ job satisfaction, while negative feedback impacts behavior. This
is supported by Amabile and Kramer [6], who show that positive feedback
can not only lead to higher job satisfaction, but also to better performance
on creative tasks. When applied to a learning goal as is often required in

129

software development, feedback on progress can have a positive e�ect on
reaching that goal [186, 53].

Prerequisites: Progress must be measurable for the software engineering
practice, i.e., a metric must supply the current progress and the a value for
which completion is defined.

Examples: Niebuhr and Kerkow [128] demonstrate that feedback on progress
can motivate users of a computer system for repetitive tasks. Schunk and
Swartz [159] show that feedback on progress can increase performance even
for more creative tasks, such as writing.

Related Adoption Patterns: Depending on the adoption problem, a dif-
ferent kind of feedback may be more suitable. Performance Feedback and
Potential Value provide alternatives.

7.6.2. Performance Feedback

Problem: Frequency or quality of developers’ application of the practice
are not satisfactory.

Solution: Provide developers with feedback on their performance regard-
ing their application of the practice, compared with their own past perfor-
mance.

Rationale: Feedback on performance can enable and motivate individuals
to improve their performance [5, 108].

Discussion: Feedback on performance is widely and successfully used to
improve employee performance [5]. However, software development as a
profession requires employees to constantly learn and develop themselves.
Dweck [53] summarizes several studies that show that for learning contexts,
focusing on performance goals can be significantly less e�ective than learn-
ing goals (cf. also Lunenburg [113]). Thus, for adoption problems that
require developers to learn new material, the Progress Feedback pattern is
more appropriate.

130

Prerequisites: Performance must be measurable for the software engineer-
ing practice.

Examples: Jung et al. [88] show that performance feedback integrated
into an idea generation tool can improve individuals’ performance.

Related Adoption Patterns: This pattern is similar to Leaderboard and
Relative Ranking, in that it enables competition with oneself. Depending
on the adoption problem, a di�erent kind of feedback may be more suitable.
Progress Feedback and Potential Value provide alternatives.

7.7. Supporting Adoption Patterns

The following patterns cannot be implemented on their own, but require one
or more of the aforementioned adoption patterns to be in use. They provide
solutions to some problems that can be encountered with interventions
using those patterns.

7.7.1. Tuned Activity

Problem: Participation in interventions is low, reducing their e�ect.

Solution: Tune the visible activity levels of the intervention so that there
is enough activity to make participants feel part of a lively community, but
do not overload them. If necessary, generate artificial activity.

Rationale: The appearance of a lively community through visible activity
increases participation [131, 37], but too much activity can lead to infor-
mation overload [40, 190, 42].

Discussion: Rogers reports that a determining factor for the successful
adoption of many innovations is critical mass [149]. Potential adopters are
aware of this phenomenon and adjust their adoption behavior accordingly:
if an innovation is perceived as having reached critical mass, adoption in-
creases [149].

131

Prerequisites: An intervention or another system emitting activity infor-
mation must be in use or planned to be used.

Examples: The social media site reddit4 used fake accounts to appear
lively and stimulate community formation5. Wang et al. [190] developed a
dynamic awareness system that improved the perceived utility of the system
for its users by reducing unwanted activity.

Related Adoption Patterns: This pattern can support a Microblog, Nor-
mative Behavior, and Triggers.

7.7.2. Review

Problem: An adoption pattern requires a metric, but no acceptable one
is available.

Solution: Let developers provide reviews of others’ contributions and use
review scores as a surrogate metric.

Rationale: Several adoption patterns require a metric to quantitatively
measure compliance to provide feedback, award badges, or compare perfor-
mance. Many of the known software engineering metrics are not acceptable
for these patterns, as they require interpretation in context. Reviews by
developers alleviate this problem by adding an interpretation step by a
human.

Discussion: Metrics in software engineering are prone to misinterpretation
if not interpreted in context [18]. Reviews are an accepted alternative to
measure qualities for which no automatic metric is available — e.g. in
software engineering [148] and academia [165].

Prerequisites: Developers must be motivated to conduct reviews. As re-
views can be seen as simply another software engineering practice for which
adoption must be improved, adoption patterns can be used to mitigate this
problem.

4
http://reddit.com

5According to an interview with reddit founder Alexis Ohanian: http://bigthink.

com/ideas/23998

132

http://reddit.com
http://bigthink.com/ideas/23998
http://bigthink.com/ideas/23998

Examples: Code reviews are an accepted practice in software engineer-
ing, in industry as well as open source [148]. The news website Slashdot6

successfully uses reviews to moderate the quality of comments on news
articles [98].

Related Adoption Patterns: The Meta-Review can improve the quality
of the metric resulting from the reviews.

7.7.3. Meta-Review

Problem: The quality of reviews gained through the Review pattern is
unsatisfactory.

Solution: Let other developers review the reviews.

Rationale: Having di�erent developers assign a review score to a review
itself helps evening out mistakes made by the original reviewers.

Discussion: Consciously or unconsciously malicious developers can endan-
ger the quality of the system established by the Review pattern, e.g. by
giving consistently low review scores to gain relative advantages themselves.
Adding another level of reviews is a common practice to alleviate this prob-
lem, e.g. in scholary reviews.

Prerequisites: Developers must be motivated to conduct meta-reviews.
As they can be seen as simply another software engineering practice for
which adoption must be improved, adoption patterns can be used to miti-
gate this problem.

Examples: The news website Slashdot7 successfully uses meta-reviews to
moderate the quality of the reviews of comments on news articles [98].

Related Adoption Patterns: This pattern can support the Review pat-
tern.

6
http://slashdot.org

7
http://slashdot.org

133

http://slashdot.org
http://slashdot.org

7.7.4. Automatic Badges

Problem: A pattern requires that reputation or achievements be made
explicit.

Solution: Award meaningful badges of di�erent categories based on ex-
plicit, automatic rules.

Rationale: If awarded badges have an accepted meaning in a community,
they are more likely to be e�ective in motivating individuals [99]. Explicit
rules make the goal an individual has to reach transparent, supporting
motivation [108]. Separating rewards into categories can increase motiva-
tion [194].

Discussion: In both competiton and cooperation, individuals rely on sig-
nals to assess each other: their experience, reputation, skills, or group
a�liations. Social transparency that makes such qualities explicit can sup-
port this process [162]. Badges specifically fulfil multiple roles: they can
be used for assessment, but also serve as status symbols, assist individuals
in setting goals, and can support group identification [7]. Halavais [82] as
well as Hamari and Eranti [83] provide guidelines on the e�ective design of
badges.

Prerequisites: An accepted metric must be available that can be used to
implement the automatic rules.

Examples: The developer profile aggregator Coderwall8 awards achieve-
ment badges based on an individual’s commits to di�erent version control
repositories. In a study by Singer et al. [162], developers report that this
mechanism motivates them to try out new programming languages.

Related Adoption Patterns: Peer Badges are an alternative if no suitable
metric for awarding badges is available.

8
http://coderwall.com

134

http://coderwall.com

7.7.5. Peer Badges

Problem: A pattern requires that reputation or achievements be made
explicit, but no suitable metric is available.

Solution: Let developers award badges of di�erent categories to peers
based on documented and accepted criteria.

Rationale: If awarded badges have an accepted meaning in a community,
they are more likely to be e�ective in motivating individuals [99]. Informal
peer rewards have been shown to increase individual e�ort [145]. Docu-
mented criteria make the goal an individual has to reach transparent, sup-
porting motivation [108]. Separating rewards into categories can increase
motivation [194].

Discussion: In both competiton and cooperation, individuals rely on sig-
nals to assess each other: their experience, reputation, skills, or group
a�liations. Social transparency that makes such qualities explicit can sup-
port this process [162]. Badges specifically fulfil multiple roles: they can
be used for assessment, but also serve as status symbols, assist individuals
in setting goals, and can support group identification [7]. Halavais [82] as
well as Hamari and Eranti [83] provide guidelines on the e�ective design of
badges.

Prerequisites: A set of criteria for awarding badges that is accepted by
the developer population must be available.

Examples: Wikipedia editors can award barnstar badges to fellow con-
tributors. Restivo and van de Rijt show that receiving a barnstar can
significantly increase e�ort [145].

Related Adoption Patterns: If a metric is available that is accepted in
the developer population, Automatic Badges can be used instead.

135

7.8. Summary

This chapter introduced a catalog of adoption patterns. A change agent
applying PAIP can use these patterns to improve the adoption of a soft-
ware engineering practice in a given situation. The adoption patterns are
categorized by the stages in the innovation-decision process they address,
with five adoption patterns supporting other patterns. Fig. 7.2 provides an
overview of all proposed adoption patterns.

Decision ImplementationKnowledge Persuasion Motivation

Supporting

Mass
Medium

Microblog

Voice for
Help

Reputation
for Help

Normative
Behavior

Social Anchor

Peer
Recommender

Challenge

Embrace
Examples

Incremental
Engagement

Progress
Feedback

Performance
Feedback

Triggers

Appreciation

Reputation for
Adoption

Potential Value

Points & Levels

Leaderboard

Relative Ranking

Meta-
Review

Peer
Badges

Automatic
BadgesReviewTuned Activity

Figure 7.2: An overview of all adoption patterns and their categories.

In the knowledge stage, di�using awareness knowledge, how-to knowl-
edge, and principles knowledge about an innovation are important [149].
The Mass Medium pattern proposes the simplest approach: distributing
knowledge about a practice directly to developers. The Microblog supports
knowledge di�usion between developers directly. To emphasize the role of
opinion leaders, the Voice for Help pattern adds a facility for developers to
di�use their own knowledge themselves in a more extensive format, e.g. via
company-internal blogs. To support this, the Reputation for Help pattern
provides an incentive.

During the persuasion stage, individuals form an opinion of an inno-
vation [149]. To influence this process, the Normative Behavior and Social
Anchor patterns use e�ects related to social learning theory [9]. The Peer

136

Recommender pattern supports such processes by suggesting similar or rel-
evant developers to each other.

The KAP-gap — a situation in which knowledge and a favorable atti-
tude do not result in adoption — can result from a lack of motivation, the
absence of cues-to-action, or the preventive nature of an innovation [149].
Triggers provide cues to developers to start using a practice. Both Appre-
ciation and Potential Value can show a developer that a decision to adopt
a practice would be beneficial for others, creating meaning. Finally, the ex-
trinsic motivators of the Reputation for Adoption, Points & Levels, Leader-
board, and Relative Ranking patterns can support developers in trying a
new practice and in applying a routine practice more often or intensively.

At the decision stage, it is helpful for a potential adopter to try the
innovation on a probationary basis. Using research into goal-setting, the
Challenge pattern suggests tasks related to a practice to developers. The
Embrace Examples pattern makes an existing practice explicit: the use of
examples in software development. While often devalued as “copy and paste
coding” [10], it can serve as a powerful device to get developers started with
using a practice [140]. The Incremental Engagement pattern acknowledges
that di�erent developers might be at di�erent proficiency levels and suggests
tasks especially tailored to a developer’s situation.

In the implementation stage, adopters are trying to reduce any re-
maining uncertainty with regard to the innovation [149]. Both the Progress
Feedback and the Performance Feedback pattern help developers understand
whether they applying the practice correctly and how proficient they al-
ready are.

This list of adoption patterns is necessarily only a snapshot of what is
currently known. New results from research as well as changes in society
will make it necessary to revise existing patterns, remove existing ones, or
add new ones. Society is not only influenced by technology, but it also
shapes technology itself — creating a feedback loop [115]. In this way, the
patterns themselves might as well influence their own future evolution.

To show that the combination of PAIP and the adoption pattern catalog
can indeed be used to improve the adoption of software engineering practice,
the next chapter provides an evaluation of an early version of PAIP and a
subset of the adoption patterns in a student project.

137

8. Quasi-Experiment: Version Control Practices
in a Student Project

Together with Stapel and Schneider, I conducted the following quasi-experiment
to evaluate whether the process prescribed by PAIP and the associated
adoption patterns can be e�ectively used to improve the adoption of soft-
ware engineering practices. In a student project lasting a full semester,
we attempted to improve the adoption of version control practices in small
teams of student developers. We used early versions of both PAIP and the
catalog of adoption patterns and used the experience from this evaluation
to refine both.

A quasi-experiment is an experiment in which the assignment of subjects
to the control vs. treatment conditions is non-random. In our case, the
control group was comprised of data from the version control repositories
of previous years in which our group organized this project. The treatment
group was the cohort of students taking the project in the fall term of 2011.
Organization and tasks in all years have been relatively similar.

8.1. Introduction

As has been shown in chapter 5, developers do not always strictly follow
software development processes and software engineering practices. Even
though individuals may be aware of a practice and its advantages, as well
as capable of implementing it, they do not always adopt it — a situation
called the KAP-gap (cf. chapter 2).

In centralized version control systems such as Subversion1, developers
should commit early and often to decouple changes from each other and to
spot conflicts with the work of other developers earlier [21]. To make brows-
ing historical data easier, each change should include a description of its
contents. Even though many developers know of these or similar guidelines,
they do not always follow them. This can influence the maintainability —
and therefore quality and costs — of a software project negatively.

1
http://subversion.apache.org

139

http://subversion.apache.org

Fig. 8.1 shows a commit to a repository hosted on the GitHub social
coding website2. As he did not commit frequently enough, the author is
unable to tell which changes the commit contains. Instead of making several
commits and describing them appropriately, he commits all his changes at
once with a commit message that does not give a useful description of the
contained changes. In a team of software developers, such a commit would
be problematic for other team members to comprehend.

Figure 8.1: A commit on GitHub.

We often find similar commits in student projects: developers include
several di�erent features and fixes in single commits and leave commit mes-
sages empty. This problem occurs regularly, even though the organizers of
that student project emphasize each year that they want students to com-
mit regularly, since the version control repository is the only way for our
group to continue work on the students’ projects later — for which a mean-
ingful commit history would be useful. The organizers also emphasize that
other students — peers of the student developers — might need to access
the repository in the future, e.g. to improve on one of the student projects
for a thesis.

However, the problem persists. We suspect the reason to be a combina-
tion of missing knowledge regarding best practices and a lack of motivation
for spending the additional e�ort needed for thoughtful commits. We there-
fore decided to apply an early version of PAIP in the fall 2011 term’s project
and used a selection of adoption patterns to create a persuasive intervention
to alleviate this problem. Before documenting our application of PAIP, the
following section introduces the experiment context.

8.1.1. The Software Project Course
Each fall semester, our research group organizes the software project (SWP)
course, a mandatory course for computer science undergraduates. The
course has roughly 35 to 70 participants every time, most of them in their

2Source: https://github.com/steveodom/beta-signup/commits/master/views, ac-
cessed Feb 9th 2012

140

https://github.com/steveodom/beta-signup/commits/master/views

Requirements Software Design Implementation

October November December January

R
ol

lo
ut

 &

A
cc

ep
ta

nc
e

Figure 8.2: The process of the software project course.

fifth semester. The students form teams of four to six members, and elect a
project leader as well as a quality agent. The project starts at the beginning
of October and lasts until the end of January.

The members of our group act as customers, proposing software projects
that we would like to have developed. That way, we are able to provide
projects with real requirements while keeping control of their size and tech-
nological demands. This is beneficial for the comparability of projects in
experiments such as the one presented here. Usually, each student team
will work on a di�erent project with a di�erent customer, however some
projects may be given to multiple teams to work on independently.

Each project is divided into three main phases: requirements elicitation,
software design, and implementation. After that, customers get to try out
the produced software and assess their compliance with requirements in a
short acceptance phase (cf. Fig. 8.2).

After each phase, the teams have to pass a quality gate (QG) to proceed
to the next phase. This ensures a minimum quality of the artifacts devel-
oped in each phase. If a team fails a quality gate, they are allowed to refine
their artifacts once. Failing the quality gate for a single phase repeatedly
would lead to failing the course. However, this has not happened yet.

So far, we have conducted this course every year since 2004. However, for
this experiment, we only consider the years starting with 2007, as this was
the first year we had the students use Subversion for version control. The
process we use and the size of the projects have not changed significantly
since then. The duration has constantly been the whole fall semester. While
each project is di�erent, we take care to always provide projects with similar
requirements regarding e�ort and proficiency in software development. This
is to ensure fairness between the teams with the added benefit of better
comparability.

The preconditions regarding the participants have been very stable. Our
group teaches all the basic courses on software engineering, software quality,

141

and version control. The contents of these courses have remained similar
over the years.

In the first phase, students make appointments with their customers and
interview them about their requirements. They produce a requirements
specification that they need to get signed by their respective customer to
proceed to the next phase. In the second phase, the teams can choose
between preparing an architecture or creating exploratory prototypes. In
both variants, they are required to produce a software design document.
They implement the actual applications in the third and final phase.

During the project, a member of our group will act as coach, answering
questions about technical subjects and the development process. To create
time scarcity, each team receives six vouchers for customer appointments
of 15 minutes each and six vouchers for coach appointments of 30 minutes
each.

At the end of the project, the customer executes the acceptance tests
from the requirements specification and decides whether rework is needed.
Once the customer has finally accepted or rejected the software product,
the role-play ends.

Finally, we conduct an LID session with each team. LID — short for
Light-weight Documentation of Experiences — is a technique for the elic-
itation of project experiences [156]. A typical LID session for the course
takes about two hours during which the team members and a moderator
jointly fill in a template for experience elicitation. An LID session inquires
students about impressions, feelings, conflicts, and advice, and has them
review the whole project from beginning to end. In the sessions, we em-
phasize that their passing of the course will not be a�ected anymore and
encourage them to honestly describe the negative experiences as well.

For each team, we provide a Subversion repository, a Trac3 instance for
issue tracking, and a web-based quality gate system that is used to progress
the teams through the project phases. The Trac instance is linked to the
team’s version control repository, so students are able to see their team’s
commits using either Trac or any Subversion client.

3
http://trac.edgewall.org

142

http://trac.edgewall.org

8.2. An Application of PAIP

This section documents how we applied PAIP and deployed a persuasive
intervention — with a Web application called Teamfeed as its treatment
— to a student population of 37 participants. The section’s organization
is based on PAIP’s first five steps: Characterize Context, Define Adoption
Goal & Metrics, Choose Adoption Patterns, Design Treatment, and Deploy
Intervention. The succeeding section implements the sixth step: Analyze
Results.

8.2.1. Characterize Context
In the first step of PAIP, the change agent determines the current context
in which PAIP is to be applied. This entails the practice for which adoption
should be improved and its properties, as well as the characteristics of the
developer population.

The Software Engineering Practice To apply PAIP, the change agent
decides whether the practice for which adoption is to be influenced is com-
prised of primarily routine or creative tasks. This experiment is concerned
with practices for committing to version control, which involves deciding
when to commit, what to commit, and how to describe it in the commit
message. Based on the rough guidelines given in PAIP’s description (chap-
ter 6), we determine that our practice entails creative tasks.

The Developer Population Regarding the developer population, the change
agent determines whether there are any existing adopters of the practice
that could act as role models. As we have seen some student developers
adhering to good committing practices in previous years, we decide that we
can indeed assume existing adopters in our population.

8.2.2. Define Adoption Goal & Metrics
In this second step, we define the adoption goal that the intervention should
be optimized for. To measure success in the last step, we define metrics.

Defining a Goal As advised by PAIP, we first choose simple goals that will
improve the performance of those developers with less experience. Further
improvements would be possible in future iterations. Therefore, we want

143

students to commit at all, to commit more often, to commit more regularly,
to write commit messages for their commits, and to write longer commit
messages overall.

When defining the goal, PAIP requires the change agent to choose either
one or both of “Start Adopting a New Practice” or “Improve Adoption of
a Known Practice”; for our experiment, we choose both. In every previous
instance of the software project course, there have been some students who
never committed to version control, while most did commit at least once.
Some of those committed only in bursts, some committed more regularly;
some wrote commit messages, and some others did not. For the goals above,
we therefore want to both increase adoption and increase adoption.

Research Questions

For the context of this evaluation, we formulate our goals into research
questions that we will investigate in the succeeding section, documenting
PAIP’s sixth step:

• RQ 1: Does our intervention influence student developers to make
more commits and space them out more evenly over time?

• RQ 2: Does our intervention influence student developers to write
more and longer commit messages?

Defining the Metrics To measure our previously defined goals, we choose
the metrics listed in Table 8.1. The table also assigns metrics to research
questions. Most metrics are self-explanatory, except possibly the time be-
tween consecutive commits. We use this metric to measure whether devel-
opers commit more regularly — that is, more evenly spread out over time,
with less bursts of commits. Assuming a constant number of commits, a
more regular committing behavior would then result in the median time
between commits to increase.

The final version of PAIP recommends choosing meaningful metrics that
also cannot be manipulated, whereas the early version used in this experi-
ment did not. Thus, the above metrics can be easily manipulated by simply
committing more often without any reasonable content. Also, they do not
state anything about the actual quality of a commit, and therefore do not
carry much meaning. Section 8.3.3 provides insights into these issues with

144

a qualitative analysis. However, we follow the playful metric recommenda-
tion in that we never connected the committing behavior of students with
actual consequences, such as passing or failing the course.

Finally, PAIP also requires us to define when to take measurements and
to record a baseline measurement. For this quasi-experiment, our baseline
— i.e., the control group — consists of the Subversion repositories collected
during previous instances of the course from 2007 to 2010. These reposito-
ries contain the commits of 214 students. The results are measured after
the course has ended.

Hypotheses

For our experiment, we derive the alternative hypotheses for our research
questions. We assume that a positive influence on the commit behavior of
developers can be exerted by deploying our persuasive intervention. This
influence should lead to more commits per developer, to temporally more
evenly spaced commits, to more commits with messages per developer, and
to longer commit messages. Accordingly, our respective null hypotheses are
that the deployment of the intervention has no influence on these phenom-
ena.

8.2.3. Choose Adoption Patterns
The previous two steps of applying PAIP reveal that we want to either
start or improve the adoption of a practice that is comprised of relatively
creative tasks. We assume to have some existing adopters. The meaning of
our metrics is questionable, however the early version of PAIP did not yet
recognize this. Based on this information, we choose the following adoption

RQ Metric Counting Rule
RQ 1 c Number of commits per user

�t
C,avg

�t
C,med

Average and median time between two consec-
utive commits of a user in seconds

RQ 2 c
M

Number of commits with message per user
c

M

/c Message-to-commit-ratio per user
l
M,avg

l
M,med

Average and median number of characters of
the commit messages of a user

Table 8.1.: Summary of the defined metrics, assigned to their respective research
questions.

145

patterns for our intervention in the third step of PAIP. For each pattern,
we also repeat its solution below.

• Normative Behavior: “Make explicit what normative behavior
should be by continuously publishing the behavior of developers, pos-
itively emphasizing desirable behavior.”

• Triggers: “Use notifications to cue developers to applying a practice
by directing their attention to a task related to the practice. To
support motivation, associate triggers with positive feedback or a goal
to be reached. Do not overload developers with triggers.”

• Points & Levels: “Award points and levels for the activity that is
to be started or intensified. Provide a space for users to display their
points and levels, e.g. on a user profile. Give clear instructions on
how to attain di�erent levels.”

Note that the recommendation for clear instructions was added only
after the completion of this experiment, and therefore was not taken
into account.

• Leaderboard: “Use a metric that measures compliance with the soft-
ware engineering practice to rank developers against each other, cre-
ating explicit competition. If possible, have groups compete against
each other instead of individual developers against each other.”

Note that the recommendation for groups competing against each
other was added only after the completion of this experiment, and
therefore was not taken into account.

• Challenge: “Provide developers with explicit, attainable, and chal-
lenging goals. Make sure developers understand what the conditions
for attaining the goal are and give explicit feedback on results. Pre-
fer challenges that require the developer to learn something new over
those that merely require reaching a certain performance as measured
by a metric.”

Note that the recommendation for learning goals was added only after
the completion of this experiment, and therefore was not taken into
account.

• Progress Feedback: “Provide developers with positive feedback on
the progress they are making in their application of the practice.”

146

• In addition, the early version of the list of adoption patterns contained
a pattern that recommended Commenting: adding a commenting fa-
cility to the messages generated by the Normative Behavior adoption
pattern to stimulate exchanges. This was indicated by results re-
ported on by Foster et al. [64], however further evidence was not found
in the literature review. This pattern was therefore not included in
the adoption pattern catalog.

Except for the knowledge stage — which was not addressed by the early
version of PAIP —, this selection of adoption patterns covers all stages
of the innovation-decision process that are relevant to PAIP. Three of the
patterns are from the motivation category: as mentioned before, we suspect
missing motivation to be a reason for the adoption issues.

8.2.4. Design Treatment

Using the adoption patterns chosen in the previous step, we now create a
treatment that implements the patterns. This design is in part informed
by the examples listed for each adoption pattern.

Newsfeed A newsfeed displaying the version control commits for each
team implements the Normative Behavior adoption pattern. When no com-
mit message is given, the application displays a highlighted text stating that
a message is missing.

Leaderboard A list of a team’s members, ordered by their respective num-
ber of commits so far, implements the Leaderboard adoption pattern. Next
to the name of each team member, the member’s current number of com-
mits is given. Below, the total number of commits for the team is displayed.

Milestones At predefined thresholds for numbers of commits, the appli-
cation congratulates users and teams on reaching a milestone. This im-
plements the Points & Levels pattern. By slowly increasing the distance
between the thresholds, this also implements the Challenge pattern: by
committing, developers are able to recognize that there will be another
milestone at an even higher number of commits, providing them with a
goal. The congratulatory messages implement the Progress Feedback pat-
tern.

147

Figure 8.3: A screenshot of Teamfeed’s newsfeed and leaderboard.

Notifications For positive events, such as reaching an individual or team
milestone, the application sends out email notifications — this implements
the Triggers adoption pattern. The congratulatory messages in the emails
implement the Progress Feedback pattern.

Weekly Digest Each sunday, the application emails a weekly digest to
each developer. It shows the current leaderboard, as well as any milestones
reached in that week. This implements the Triggers adoption pattern. The
congratulatory messages that were given when a milestone was reached
implement the Progress Feedback pattern.

Teamfeed

We now present the completed Teamfeed application. As recommended by
PAIP, it is a Web application. For notifications, it uses email. Teamfeed
periodically reads the commits to each team’s repository and saves them
to a database. They are then displayed in a newsfeed for each team. Ev-
ery student in the project can log in to Teamfeed using their Subversion
account and is then presented with their respective team’s newsfeed. The
newsfeeds of other teams are not accessible to the students. Fig. 8.3 shows
an anonymized screenshot of the application in which the names of students
and their team have been altered. Several other texts have been translated
from German into English.

148

From: Teamfeed <teamfeed@se.uni-hannover.de>
Subject: Teamfeed: The past week
Date: January 15, 2012 2:59:52 PM GMT+01:00
To: "Edgar Eggplant" <edgar.eggplant@example.org>
Reply-To: "teamfeed@se.uni-hannover.de" <teamfeed@se.uni-hannover.de>

Hello Edgar Eggplant!

In this weekly digest, we report what you and your team
achieved in the previous seven days.

You made 18 commits this weeks.

Your teammates achieved the following:
* Adam Apple made 36 commits this week and, in doing so,
reached a milestone: the 100th commit.
* Dennis Durian made 10 commits this week.
* Carla Chestnut made 32 commits this week.
* Bill Banana made 21 commits this week.

In total, your team made 117 commits this week. This allowed
you to reach a milestone: your 500th commit. Excellent!

This is the current status of your team:
1. Dennis Durian (132)
2. Adam Apple (122)
3. Bill Banana (107)
4. Carla Chestnut (84)
5. Edgar Eggplant (66)

Best wishes for next week!
 The Teamfeed Team
 http://teamfeed.example.org

Figure 8.4: A weekly digest as sent by Teamfeed.

Reaching a milestone generates a special posts to the newsfeed. For
the milestones, we defined thresholds of 1, 10, 25, 50, 100, 250, 500, 750,
1000, 1500, 2000, 2500, 3000, 4000, 5000, 7500, and 10000 commits. These
generate posts such as “Congratulations! Jane Doe has reached her 200th
commit!” or “Wonderful! Your team has just reached the 1000th commit!”
We based the thresholds on previous semesters’ commit counts and added
a bu�er.

On the right, the leaderboard lists the team members and the counts of
their respective commits so far. For higher ranks, name and commit count
are displayed in a larger font.

Each Sunday at around 3pm, Teamfeed sent out the weekly email digest
to each student such as the one depicted in Fig. 8.4. The digest summarizes
how many commits the individual student has made in the past week, but
also provides this information about their teammates. It also mentions
milestones that were reached during the week and shows the current state
of the leaderboard.

8.2.5. Deploy Intervention

Once the treatments have been created, the change agent deploys them as
a persuasive intervention in the organization. We deployed Teamfeed at the

149

Group Control Teamfeed

Term 2007 2008 2009 2010 � 2011

n 40 40 76 58 214 37
n

C

31 36 73 55 195 37
n ≠ n

C

9 4 3 3 19 0
n

C

/n 78% 90% 96% 95% 91% 100%
c

total

3973 3680 6993 7223 21869 4842
c

total

/n 99 92 92 125 102 131

Table 8.2.: Overview of data sources and their values for number of subjects (n),
number of subjects who committed (n

C

), number of subjects who never committed
(n ≠ n

C

), percentage of committing subjects (n
C

/n), number of total commits
(c

total

), and average commits per subject (c
total

/n).

start of the software project course in the fall term of 2011. The students
were told that the purpose of Teamfeed was to support their collaboration.

8.3. Analysis

The final stage of PAIP involves taking a measurement and comparing it
to the baseline to assess the e�ectiveness of the intervention. This informs
the next iteration of the process.

Table 8.2 shows the data sources we used for data collection in our exper-
iment. It includes the data from five years of the software project course,
i.e., the data accumulated in the fall terms of the years 2007 through 2011.
The first four years were used as the control group. In 2011, we introduced
the Teamfeed application and therefore used it as our treatment group.

In total, there were 26711 commits in the five years (c
total

). In the first
four years, each participant made 102 commits on average (c

total

/n). In
2011, this value was at 131 commits. 251 students took the course over
the five years, which can be seen as n in Table 8.2. The treatment group
consisted of 37 participants.

n
C

documents the number of students that did commit at all in the
respective year. As the values for n

C

/n show, all students in the treatment
group committed at least once to version control (100%). In the previous
years, however, some participants never made a single commit (i.e., on
average, 91% committed at least once).

Fig. 8.5 illustrates the commit behavior by the control group (Regular)
and the treatment group (Teamfeed) over time. Special events, such as

150

2 0

4,0

6,0

8,0

10,0

12,0
Commits per Day per Student

0,0

2,0

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119

Regular Teamfeed
Acceptance testQG3QG2QG1

Requirements

M
a

in
te

n
a

n
c
e

ImplementationDesign

H
o

lid
a

ys

Figure 8.5: Commits of the control group (Control) and the treatment group
(Teamfeed) over time.

quality gates — i.e., ends of phases — and Christmas holidays can be seen
as variations in the graph.

For example, for all five years, the number of commits spiked in the
implementation phase, and even more so shortly before the end of the
phase. During the holidays, no considerable decline can be seen. Then,
after New Year, commit activity rises sharply. It is visible in the graph
that the treatment group exhibited a more active commit behavior before
the holidays, but a relative decline in the maintenance phase.

8.3.1. Descriptive Statistics

We now present the data we collected for the metrics we defined, aggregated
in Table 8.3 and visualized as box plots in Fig. 8.6. Each set of data is de-
clared for the control group (C) and the treatment group (T), respectively.
For each value, we provide the minimum, the median, and the maximum
value.

For example, Table 8.3 shows a 76% increase in median commits per
participant (c) for the treatment group. The ratio of commits with messages
to commits overall (c

M

/c) increased by 75%. We now discuss whether these
and other di�erences are statistically significant.

8.3.2. Hypothesis Testing

For most metrics, we were able to determine a statistically significant dif-
ference between the values for the control group and the values for the

151

!
Figure 1. Box plots of the data collected for the metrics.

0d 00h

0d 06h

0d 12h

0d 18h

1d 00h

1d 06h

1d 12h

1d 18h

2d 00h

Control
(n=193)

Teamfeed
(n=37)

Average time between
commits per user

0

50

100

150

200

250

300

350

Control
(n=195)

Teamfeed
(n=37)

Number of commits
with message

0%

20%

40%

60%

80%

100%

Control
(n=195)

Teamfeed
(n=37)

Relative number of
commits with

message

0

20

40

60

80

100

Control
(n=182)

Teamfeed
(n=37)

Average length of
commit messages

0

20

40

60

80

100

Control
(n=182)

Teamfeed
(n=37)

Median length of
commit messages

0
50

100
150
200
250
300
350
400

Control
(n=214)

Teamfeed
(n=37)

Number of commits
per user per project

00:30

01:00

01:30

02:00

Control
(n=193)

Teamfeed
(n=37)

Median time between
commits per user

Figure 8.6: Box plots of the data collected for the metrics.

Metric Group Min Median Max

c Control (n=214) 0 69 683
Treatment (n=37) 7 122 387

�t
C,avg

C (n=193) 00:00 17:55 >17d
hh:mm T (n=37) 05:51 15:09 >8d
�t

C,med

C (n=193) 00:00 00:27 >6d
hh:mm T (n=37) 00:00 00:39 >1d

c
M

C (n=195) 0 22 587
T (n=37) 1 69 354

c
M

/c C (n=195) 0% 49% 100%
T (n=37) 4% 86% 100%

l
M,avg

C (n=182) 1 39 211
T (n=37) 11 47 92

l
M,med

C (n=182) 1 28 165
T (n=37) 9 36 85

Table 8.3.: Minimum, median, and maximum values for the collected metrics:
number of commits per subject (c), average (�t

C,avg

) as well as median (�t
C,med

)
time between commits, number of commits with a message per subject (c

M

), per-
centage of commits with a message (c

M

/c), and average (l
M,avg

) as well as median
(l

M,med

) lengths of commit messages.

152

treatment group. We performed a Kolmogorov-Smirnov normality test for
all the metrics. These tests showed that the data do not follow a nor-
mal distribution. Therefore, we had to use the non-parametric two-tailed
Mann-Whitney U test to test for the significances of di�erences. Table 8.4
presents the results of our tests for statistical significance.

For research question 1, there is a significant di�erence between the
number of commits per student for the two groups: an increase in 76%
(c; p < 0.01). The average time between commits does not di�er signifi-
cantly (�t

C,avg

). However, the median time between commits exhibits a
significant (�t

C,med

; p < 0.05) di�erence: an increase in 44%. We therefore
reject the null hypotheses for the first and the third metrics of research
question 1.

The measurements for research question 2 show significant di�erences.
The number of commits with messages per developer increased by 213%
(c

M

; p < 0.01); the ratio of commits with messages to overall commits
increased by 75% (c

M

/c; p < 0.01).

The di�erence for the average length of commit messages is not signifi-
cant, with a 20% increase (l

M,avg

; p < 0.1). The di�erence for the median
length of commit messages is significant with a 28% increase (l

M,med

; p <

0.05). We therefore reject three of the four null hypotheses for research
question 2.

8.3.3. Qualitative Analysis

To better understand the e�ects of our intervention, we now provide an
additional qualitative discussion.

RQ Metric Control Treatment Di�erence Confidence

RQ 1 c 69 122 +76% p < 0.01
�t

C,avg

17:55 15:09 -15% p > 0.1
�t

C,med

00:27 00:39 +44% p < 0.05
RQ 2 c

M

22 69 +213% p < 0.01
c

M

/c 49% 86% +75% p < 0.01
l
M,avg

39 47 +20% p < 0.1
l
M,med

28 36 +28% p < 0.05

Table 8.4.: Overview of statistical test results.

153

LID Sessions At the end of the LID sessions we conducted with each
team of the treatment group, we inquired about their impressions of Team-
feed [164]. This provided us with some notable insights:

• More experienced developers often ignored Teamfeed and the emails
it sent. Some even had setup a filter in their email clients for this
purpose. However, only few seemed to be annoyed by the emails. In
an industrial setting, one might want to give developers a way to opt
out of such email. Yet, none asked us about such an option during
the course.

• Several of the more novice developers reported that they felt mo-
tivated by the milestones. The only team which reached the 1000
commits milestone was comprised of such members.

• No developer reported any manipulative attempts by themselves or
by team mates. To ensure this, we performed a sanity check of a
sample of commits, finding no indication for manipulation (such as
empty commits).

• One developer explicitly said that Teamfeed’s milestones made him
commit in smaller batches. Instead of putting several bug fixes into a
single commit, he committed his changes after every single fix. In our
view, this is desirable behavior for centralized version control systems.

Website Access To assess whether participants used Teamfeed at all, we
measured its usage. Fig. 8.7 shows the daily page views over time. While
usage is moderately strong during the requirements phase, it goes down in
November. Both phases were focused on the creation of documents, and
after a while the application’s novelty might have worn o�. When soft-
ware development activities became more important, though, page views
went up at the start of December and remained strong for the rest of the
project. This indicates that the Teamfeed application was actually used by
the project participants, which we additionally ensured by scrutinizing the
web server’s log data manually.

154

50

100

150

200

250

300
Daily Page Views

0

50

Figure 8.7: Daily page views for the Teamfeed application.

8.3.4. Research Questions

In our research question 1 we asked: Does our intervention influence student
developers to make more commits and space them out more evenly over
time?

To answer this question, we defined three metrics: the number of com-
mits per student, the average time between commits, and the median time
between commits. Based on our measurements, we were able to reject the
null hypothesis for the first and the third metrics. Therefore, we conclude
that our treatment was indeed able to influence student developers to make
more commits and space them out more evenly over time. Not only did
it lead to a significantly higher number of commits per developer, but also
resulted in a more evenly distributed time between commits.

Research question 2 asked: Does our intervention influence student de-
velopers to write more and longer commit messages?

For this question, we defined four metrics: the number of commits with
messages, the ratio of commits with messages to overall commits, the aver-
age length of commit messages, and the median length of commit messages.
For three of these metrics, we were able to reject the null hypothesis. We
conclude that the introduction of our application did indeed influence stu-
dent developers to write more and longer commit messages. More commits
contained commit messages at all, and those that did contained longer mes-
sages.

155

8.4. Threats to Validity

This section discusses threats to the validity of our quasi-experiment. We
show how we tried to minimize them through the experiment design and
mention remaining limitations.

8.4.1. Internal Validity
A significant di�erence between the control group and the treatment group
does not in itself represent a causal relationship between our intervention
and the di�erences in measurement. Other confounding factors might have
had an influence. The population itself, the students’ education, and our
behavior towards the students might all have been di�erent.

The advantage of using di�erent populations for the control and treat-
ment groups, however, is that there should have been no confounding e�ects
with regard to learning or maturation. In addition, we took care to exe-
cute the course the same as in previous years. As our group also provides
the basic software engineering courses, we feel qualified to say that we did
not notice any notable di�erences in the students from the control group
compared to the students in the treatment group. Additionally, our courses
provide the basic education on version control, which was the same for both
groups.

Three of the seven development teams of the treatment group used the
Dropbox4 service to share files with each other. For the previous years,
we did not notice any use of Dropbox or alternative file sharing services
by the teams: to the best of our knowledge, they shared files using their
Subversion repositories. The use of Dropbox by members of the treatment
group might have decreased the use of version control.

8.4.2. Construct Validity
Whether the practices we chose for version control are preferable in a given
software engineering situation is debatable. However, we consider them an
important step for the population we investigated. Populations at other lev-
els of version control proficiency may require di�erent interventions. Even
though the use of metrics in software development can be problematic [18],
our research questions and the metrics we derived address the adoption of

4
http://dropbox.com

156

http://dropbox.com

these practices as directly as possible. We therefore consider them appro-
priate.

In a future investigation, we plan to examine any quality di�erences in
the commits and commit messages of the control and treatment groups.
A preliminary investigation of commit messages showed indications for a
decrease of nonsense messages (“hahaha!”), a decrease of purely technical
messages (“add getter getUser()”) and an increase in mentions of functional
changes (“fix incompatibility with framework version 1.2.5”).

One possible e�ect of public, competitive metrics is that people try to
“game the system” — i.e., they try to increase their value for the metric
using the easiest strategies, which might often not be what the creators
of the system intended. In our case, these would be empty commits or
nonsense commits. To rule this e�ect out, we randomly sampled some of
the commits from our treatment group. We found no indications for invalid
or manipulative commits.

8.4.3. Conclusion Validity

To mitigate threats to conclusion validity, we used the data collected over
several years of the software project course for our control group. These 214
participants, combined with 37 participants in the treatment group, were
suitable to provide statistically significant results. To decrease the risk of
manual errors, all data were collected automatically.

8.4.4. External Validity

The participants of our experiment were mostly students of computer sci-
ence in their 5th semester. As the German Bachelor of Science degree lasts
6 semesters, most students were almost finished with their studies. As
our treatment was directed at issues with version control practices we had
experienced from similar populations, we cannot generalize this concrete
intervention to di�erent populations. Another application of PAIP, while
more elaborate than a simple transfer of the intervention, would be more
sensible.

It is questionable how many metrics and additional interventions can be
introduced before software developers start ignoring such measures. The
tolerable amount of such treatments might be very low. Further research
regarding such scenarios is warranted.

157

Similarly, our software projects are restricted to a single semester, i.e.,
about four months. We do not think that our experiment can be general-
ized to much longer runtimes, as potential numbing e�ects seem plausible.
Again, further research is needed in this regard.

8.5. Conclusions

Our quasi-experiment demonstrated that PAIP and the catalog of adoption
patterns can be used to improve the adoption of software engineering prac-
tices — in this case, the commit behavior of student developers. While we
tried to design our experiment to minimize threats to validity, some of them
were beyond our control. It is therefore still possible that the e�ects we
measured were created or influenced by other, confounding factors. How-
ever, the qualitative data from the LID sessions back our interpretation.
Indeed, some students reported in the LID sessions that they were more
likely to commit more often and to take greater care when writing their
commit messages because of the added publicity, an e�ect that Dabbish et
al. [38] report for GitHub.

We systematically combined adoption patterns that were appropriate
for our context and goals, creating a persuasive intervention. Even though
PAIP still requires the change agent to work creatively when translating the
adoption patterns into features of a treatment, the process is now based on
less speculation than it would be without PAIP and the adoption patterns.

By using the catalog of adoption patterns, we accessed a reusable reposi-
tory of e�ects that can improve the adoption of a practice. The patterns we
used supported motivation by providing developers with goals, facilitated
social learning and related mechanisms, and regularly triggered developers
to revisit Teamfeed.

This specific intervention worked for less experienced software develop-
ers in a university setting. As we argued in section 8.4, the intervention
itself might not generalize. However, this is exactly what PAIP intends: it
provides a way to create interventions that are tailored to a practice, an
adoption problem, a population, and adoption goals.

Our quasi-experiment has shown that the application of PAIP is feasible
and can be e�ective. While this need not be true for every possible adoption
problem or situation, this data point serves as a good indicator. More
evaluations in di�erent contexts would be needed to improve confidence in

158

this regard. However, this was not feasible within the constraints of this
thesis.

159

9. Related Work

This chapter presents related work from software engineering, CSCW, and
human-computer interaction. These works either use means similar to those
used in this thesis to reach their goals, or pursue related goals.

9.1. Adoption Research in Software Engineering

Meyerovich and Rabkin [120] discuss programming language adoption and
use the di�usion of innovations theory as their model. They propose a
comprehensive research agenda that addresses how programming language
adoption should be studied. Among other means, the authors propose
improving language adoption by leveraging social networks for persuasion.

The scope of this research, however, is for now restricted to programming
languages as opposed to practices. Another di�erentiator with regard to
this thesis is their intention to also influence language design to optimize
for adoption. Conversely, the approach presented in this thesis is focused
on not changing existing practices, but on augmenting their environment.
The fact that Meyerovich and Rabkin are proposing a research agenda
for future investigations demonstrates the relevance and timeliness of the
research reported on in this thesis.

9.2. Community Design

Several authors use means that are similar to those proposed in this thesis
— mechanisms from collaboration design and social media — to inform
the design of communities and collaborative support systems. This section
introduces a selection of such approaches.

Kraut et al. [95] provide a list of what they call design claims that are
based on research results to guide the design of online communities. The
authors organize their claims into the following categories:

1. Starting new online communities: When a new online commu-
nity is created, reaching critical mass with regard to members and
content can be crucial to make it attractive to potential users.

161

2. Dealing with newcomers: New members have not yet learned the
conventions that are in place in a community and do not yet have
strong ties to its members. This category discusses how such problems
can be addressed.

3. Encouraging commitment: Compared to employment at a com-
pany or being a member of a local support group, membership in an
online community is relatively fragile. Members can leave at will, for
example for comparable alternative communities.

4. Encouraging contribution: Undercontribution can be a problem
in online communities: a community’s value to its members rests
on contributions such as conversations, collaborations, or uploaded
media. Yet only very few members contribute anything substantial.

5. Regulating behavior: Manipulative or abusive behaviors such as
spamming can be a problem for the health of an online community.
The design claims in this category show how such issues can be miti-
gated.

These design claims are related to this thesis’ adoption patterns in that
they employ similar mechanisms — some of the research the design claims
are based on was even used in the creation of the adoption patterns. How-
ever, while Kraut et al. [95] provide very actionable advise for researchers
and practitioners interested in creating and managing online communities,
the problems their design claims address are only partially related to the
issues addressed by this thesis.

In a relatively high-level discussion, Benkler [14] contrasts the di�erent
belief systems that perceive work as either mandatory and unenjoyable or as
deliberate and fulfilling. Arguing for the latter, he shows how collaboration
facilitated by computers and the Internet creates and enables new models
of work. He closes with a discussion of the means that are available to
system designers to support deliberate cooperation.

Philosophically, Benkler’s contribution is related to this thesis’ proposal:
mandating the adoption of a practice only works to a certain degree, col-
laborative creative work must be a deliberate e�ort to reach its full poten-
tial. However, Benkler’s recommendations are much more general than the
adoption patterns derived in chapter 7: they are meant to applied when
“designing for cooperation”. Furthermore, the recommendations are very

162

broad and abstract, in that they provide no directly actionable advice for
designers of cooperation systems.

Cuel et al. [36] use insights about human motivation to provide guidelines
for designing community systems in which volunteers create semantic anno-
tations of content. While the goal of this approach clearly di�ers from this
thesis’ goal, the mechanisms used are related. The authors propose using
Participatory Design [157] when creating volunteer communities, arguing
that user involvement will increase motivation. In addition, they propose a
set of guidelines to support both intrinsic and extrinsic motivations in the
final systems.

PAIP similarly encourages user involvement, but in a more light-weight
manner. The guidelines proposed by Cuel et al. are more abstract than
the adoption patterns provided by this thesis, and thus should be less ac-
tionable. Overall, the presented approach is based on a set of theories on
motivation. In addition, Cuel et al. frame the addressed problem as one
of Game Theory [66], which assumes rational agents. However, as Ben-
kler [14] argues in his discussion of community design, humans cannot be
assumed to be acting rationally, and approaches designing for cooperation
or motivation need to take this into account.

9.3. Persuasive Technology

Persuasive Technology uses computer software to influence the decisions,
attitudes, and behaviors of individuals. Fogg [62] provides a broad overview
of the field, which he calls captology. In this context, Fogg defines persuasion
as “an attempt to change attitudes or behaviors or both (without using co-
ercion or deception).” Similar to PAIP, captology uses non-coercive means,
however with much broader goal. As opposed to this thesis’ approach, cap-
tology focuses on the interaction between an individual and a computer
program, not on the interaction between individuals through computer pro-
grams. A few approaches mentioned by Fogg, however, leverage the e�ects
of social learning, social influence, and social comparison.

9.4. Gamification

This thesis’ approach is related to gamification, which, according to Deter-
ding et al. [50], is “the use of game design elements in non-game contexts.”
Gamification is used to motivate individuals to engage in activities that are

163

not games. While several proponents of gamification reduce it to simply
adding badges, ranks, leaderboards, points, etc. to existing activities, some
are more serious and base their approach on accepted theories of games,
play, social psychology, and the psychology of motivation.

The fields of application for gamification are diverse: some use it to
motivate users to use mobile applications more, others use it to cultivate
healthier lifestyles. Gamification does not need to be implemented in soft-
ware systems; instead, complete business processes might be redesigned
based on its principles. Alternatively, a gamification intervention may con-
sist mostly of hardware, such as stairs redesigned as huge and functional
pianos that motivate pedestrians to take the stairs instead of the escala-
tor [191]. Deterding and colleagues recently discussed the current state of
gamification as a field [49].

The approach presented in this thesis has a certain overlap with gami-
fication, in that some mechanisms that are used by some of the adoption
patterns are also used in gamification. However, while this thesis’ approach
might propose elements that might appear game-like at times — such as
rankings or badges — it is not based on game- or play-related theories.

Simple examples of gamification in software engineering practices include
TDGotchi1 — “a virtual pet that helps you raise your TDD practice” —
and the addition of game elements to software development activities by
Passos et al. [137]. In their case study, they applied mechanisms related to
the Points & Levels, Automatic Badges, and Leaderboard adoption patterns
presented in this thesis.

9.5. Incentive Strategies in Knowledge Management

Davenport and Probst [41] document several cases of knowledge sharing sys-
tems at Siemens. To motivate employees to share their knowledge, most ap-
proaches provided extrinsic rewards in form of monetary bonuses or points
that could be exchanged for real goods. As Deci and Ryan [44] have shown,
a legitimate use case for providing extrinsic rewards is jumpstarting a new
behavior, which was the case at Siemens. Yet, extrinsic rewards are not
sustainable. However, the long-term e�ects of the rewards on knowledge
management at Siemens are not reported. Sometimes, competition between
teams developed; however that only seemed to occur incidentally and was

1
http://www.happyprog.com/tdgotchi

164

http://www.happyprog.com/tdgotchi

not planned for. In summary, the approaches at Siemens used rather simple
motivators, did not handle motivation in a systematic manner, and their
sustainability remains doubtful.

Dencheva et al. [48] have used reputation — i.e., identity transparency
— and a theory of human motivation to increase the quantity and quality
of contributions to a corporate knowledge sharing Wiki. While knowledge
management is a relevant subject for software engineering, these e�orts as
well have not been as systematic and broad as this thesis’ approach.

9.6. Theory W

Theory W by Boehm and Ross [17] is a management theory focused on
software development projects. It is a successor to several other theories:

• According to Theory X, management should coerce workers into per-
forming their assigned tasks. The ideal workers are running “smoothly
as machines”. This stifles creativity and adaptability.

• To address this shortcoming, Theory Y focuses on stimulating cre-
ativity and individual initiative. However, this leads to conflicts and
coordination problems.

• Theory Z attempts to counter these challenges by emphasizing the
creation of a corporate culture with shared values to avoid conflicts.
However, Theory Z ignores interactions between organizations and
individual projects.

Theory W argues that to successfully executing development projects, the
manager should strive to “make everyone a winner” [17]. In this context,
our approach enables managers to make the software developers winners —
by providing them with practices and tools that target their motivations.
More concretely, the approach proposed by this thesis would support the
first step from Theory W: “Establish a set of win-win preconditions”.

9.7. Summary

This section has presented research related to the contributions of this
thesis. Some approaches use similar mechanisms, and some address similar
problems. However, no prior publications were found that use persuasive

165

interventions such as those proposed in this thesis to improve the adoption
of software engineering practices.

The following chapter concludes this thesis and provides an outlook to
future work.

166

10. Conclusions & Outlook

This chapter first discusses the limitations of the approach presented in
this thesis and the research methods used to create it. The second section
provides pointers for promising research avenues that this thesis enables
or that could augment the presented results. Finally, a summary of the
contributions of this thesis is provided.

10.1. Limitations

As any applied research, the results of this thesis have some limitations
that may constrain their applicability or reliability.

One of the basic assumptions of this thesis is that the software engineer-
ing practices for which adoption should be improved cannot be changed
— they have to be accepted as they are given. This may constrain the
e�ectiveness of the approach. By relaxing this requirement, di�erent re-
sults might be achievable. However, the adoption patterns are meant to
be applicable to any software engineering practice. Permitting changes in
the practices would require the adoption patterns to be more abstract, as
they would have to include recommendations on how to modify any exist-
ing practice. Another alternative would be constraining the approach to
only a certain class of practices. This is a trade-o�, and this thesis takes a
position on this continuum that enables it to be applicable to a broad set
of software engineering practices, while still providing relatively concrete
adoption patterns.

The list of adoption patterns may not be complete. To achieve breadth,
the literature review from which the patterns were derived had to com-
promise on verifiable completeness. It is possible that the literature review
missed patterns that would have been supportive of the thesis’ goals. Future
research might evolve the current list of patterns — adding, modifying, or
removing patterns based on new insights. However, as chapter 8 has shown,
the current list of adoption patterns can already be e�ective.

All adoption patterns are based on existing research that achieved desir-
able results — however, not necessarily with software engineering subjects,

167

or with the goal of improving the adoption of practices by individuals.
Therefore, the patterns might not work in every situation. Company cul-
ture, politics, and of course human beings all have high degrees of vari-
ance. Again, this is a conscious trade-o�: to achieve a very high reliability
and predictability of an adoption pattern’s e�ects, it would need to be re-
stricted to only very specific contexts for which it has already been shown
to be e�ective. This would severely constrain the applicability of this thesis’
contributions.

This thesis provides only the evaluation of an early version of the process
and a selection of patterns documented in chapter 8. It would be benefi-
cial to conduct more evaluations to assess the final version of PAIP and
possibly evolving it further. In addition, multiple additional evaluations of
each adoption pattern in di�erent situations and for di�erent goals would
increase the dependability of this thesis’ contribution. This is a subject for
future research.

10.2. Outlook

Technology influences society, and society in turn also influences technology,
creating a feedback loop that constantly changes the environment in which
technology exists [115]. This requires constant adaption and reevaluation
of research that leverages or supports social processes. Therefore, the list
of adoption patterns should evolve with future developments in software
engineering, social media, HCI, CSCW, psychology, sociology, and possibly
other research fields. However, while the concrete adoption patterns in this
thesis may evolve, the general approach of supporting adoption with the
systematic design of cooperative systems should be relatively stable even
in the future.

The approach presented in this thesis is focused on supporting the adop-
tion of software engineering practices by developers. However, several in-
sights from this research should also be of value to other disciplines. The
core idea of this thesis is that the systematic design of cooperative systems
based on empirical evidence can improve cooperation and influence indi-
viduals in a constructive manner. This strategy can also be used in other
domains and other goals.

Some of the adoption patterns presented in this thesis could be used to
improve employee motivation and morale — especially the patterns from
the motivation category could be suitable for this goal. However, in ev-

168

ery category of the adoption pattern catalog, there are adoption patterns
that can support at least one of competence, relatedness, or autonomy. As
such, many more adoption patterns than only those from the motivation
category could be used. Therefore, this approach could be part of a dif-
ferent approach to employee management, which Benkler [14] as well as
Amabile and Kramer [6] sketched in their recent publications. When em-
ployees are provided with autonomy and a supportive social environment,
cooperation, creativity, learning, and innovation are more likely to result.
Software engineering has strong requirements regarding these aspects.

The empirical studies presented in this thesis (cf. chapter 5) have re-
vealed several challenges and opportunities related to the design of coop-
erative software, and to the di�usion of software engineering practices and
technologies. For example, can the drive-by commits found in section 5.2
be leveraged to improve testing practices in companies? How can we sup-
port software developers using social media to assess software engineering
innovations such as libraries and frameworks? Which signals do they use
to assess reliability or dependability before deciding for a library, and what
are the consequences of such assessments? Future research will need to
consider such questions in more depth.

Finally, the approach presented in this thesis uses insights about the de-
sign of cooperative systems to improve software engineering. This may be
applicable vice versa: software engineering, which emphasizes the system-
atic creation of software, should be applied to the design of cooperative
systems. The collection of design claims by Kraut et al. [95] provides a
starting point for this, and this thesis contributes another one. The de-
sign of cooperative systems is still a bit of an art — social processes are
complicated and, especially in engineering, not well understood. However,
approaches like the one presented in this thesis can support making it less
of an art, and more of a systematic approach.

10.3. Contributions

This thesis contributes an approach that supports the adoption of software
engineering practices by software developers in a systematic manner. It
does so in a non-coercive manner, providing some advantages over existing
coercive approaches — namely, facilitating creativity, autonomy, and other
crucial components of successful software development.

169

Two empirical studies uncover opportunities showing that the design of
cooperative systems can improve the adoption of practices and technologies
in software engineering. These insights culminate in a broad literature
review, from which a catalog of adoption patterns is derived. PAIP, a
process based on existing software process improvement models, enables a
systematic application of these patterns in organizations. An evaluation of
the approach in a quasi-experiment shows significant improvements for the
adoption of version control practices among student developers.

The approach presented in this thesis is independent of concrete software
engineering practices. As such, organizations will be able to apply it to their
adoption challenges even when the state of the art in software engineering
practices has changed.

However, the contributions of this thesis to software engineering research
transcend the presented core approach. By exploring the influence of social
media on software developers and software engineering, several opportuni-
ties for future research have been uncovered.

170

A. Testing on GitHub — Coding System

This appendix contains the coding system that was developed in the study
reported on in section 5.2. Each category contains concepts, which them-
selves contain codes. Some codes appeared in other concepts from time to
time; this appendix nests codes into the concepts they appeared in most
commonly.

171

A.1. Category: Interaction

How do developers on GitHub interact with each other, and what do they
consider to be special about GitHub in this regard?

A.1.1. Concept: Characteristics of Code Changes
When interacting with others on GitHub, developers use certain properties
of code, e.g. of proposed changes, to guide their behavior.

Code Description
change size Smaller changes might not be scrutinized as extensively

by project owners.
change target The target of a change — e.g. an important class or a

CSS file — may determine the level of scrutiny a project
owner invests for a pull request.

change type Project owners used the type of a change — e.g. whether
it touched important business logic or only slightly
changed the application’s appearance — to determine
how thoroughly the change would need to be tested.

testing e�ort If a pull request’s testing e�ort would be relatively high
compared to the change, some project owners waived
their testing demands.

A.1.2. Concept: Characteristics of People
When interacting with others on GitHub, developers use certain properties
of people to guide their behavior.

Code Description
trust Some project owners simply accepted pull requests if

they came from a developer they trusted.

172

A.2. Category: Motivation

What are the motivations of project owners and contributors on GitHub
for their behaviors with regard to testing?

A.2.1. Concept: Easier Maintenance

Some project owners said that tests would make maintenance easier.

Code Description
support e�ort Testing decreases the support e�ort.
tests as docs Tests may serve as code documentation.
communicating requirements Tests may communicate requirements;

contributing a test may simply mean
adding one’s requirements to a project.

A.2.2. Concept: Project Domain

Some developers said that a project’s domain — e.g. whether it was a
testing framework or a web application for hobbyists — would influence
their perception of whether the project should have a test suite.

Code Description
role model When their project was related to testing, project

owners felt they should act as a role model for
others.

domain oblige Project owners felt obliged to write tests when
their project was related to testing.

contributing oblige Contributors felt obliged to write tests when a
project was related to testing.

A.2.3. Concept: Implicit Communication

Developers claimed that they received and also sent several implicit cues
when communicating testing culture.

173

Code Description
existence of tests Existing tests communicate that

the project values testing.
prominent placement of tests The prominent placement of tests

in a project supports communicat-
ing that testing is valued.

show value Some contributors tried commu-
nicating their own contribution’s
value by writing tests that high-
lighted it.

174

A.3. Category: Problems

What problems do members of GitHub encounter that are related to test-
ing?

A.3.1. Concept: High Exposure
Project owners were sometimes struggling with the high exposure that
GitHub provided their projects with.

Code Description
scale Project owners reported that at some point, their

project had reached a scale that forced them to au-
tomate testing.

contributor
churn

The ease of contributing on GitHub increases con-
tributor churn, making it more important to com-
municate testing culture e�ciently.

need automation Some project owners without automated tests felt an
urgent need for such a test suite.

A.3.2. Concept: Lacking Communication of Culture
Project owners as well as contributors mentioned that testing culture does
not always get communicated properly.

Code Description
no existing tests Not having tests in a project communicates that the

project does not necessarily value testing.
culture struggle Some projects were struggling with creating an ap-

propriate testing culture.
voluntarism The high level of voluntarism in open source soft-

ware development made project owner’s reluctant to
simply demand tests from contributors.

high barriers Some developers reported that the barriers especially
for first-time contributors were sometimes too high,
e.g. because of a complicated testing setup.

175

A.4. Category: Coping

How do members of GitHub cope with challenges, and how does GitHub
support its members?

A.4.1. Concept: Lowering Barriers

Developers tried to lower barriers for each other to make contribution and
the acceptance of contributions easier.

Code Description
CI service Having a continuous integration service made

accepting changes easier for project owners,
likewise the integration of Travis CI with
GitHub lowered the barrier for project owners
to get started with CI.

humble PO Instead of firmly demanding tests, project
owners sometimes communicated more
humbly with contributors, e.g. by kindly
asking for tests.

PO writes tests If a contributor did not include tests with
their contributions, and the project owner
was not able to convince the contributor to
add tests, some project owners resorted to
writing the missing tests themselves.

documented framework Contributors reported that established and
documented testing frameworks made it eas-
ier for them to include tests in their contribu-
tions.

A.4.2. Concept: Communication of Testing Culture

Some project owners actively tried to communicate their project’s testing
culture.

176

Code Description
learning resources To help potential contributor, some project

owners took care to provide easy access to
learning resources for testing, e.g. by linking
to documentation of the testing framework
used.

active support Some project owners actively mentored new
contributors to help them write tests for their
contributions, e.g. via email, text chat, or
Skype.

testing desired Some project owners tried to make it obvious
to new contributors that testing is desired in
their projects.

lead by example Some project owners said that they were try-
ing to lead by example, i.e., they wrote tests
and hoped that contributors would imitate
them.

display testing signals Some project owners and developers felt that
simple testing signals, such as the CI status of
a project, should be displayed prominently for
a project. This would show that the project
values testing.

177

A.5. Category: Impact

Which impact do interactions on GitHub, motivations, problems, and cop-
ing strategies have on open source development on GitHub?

A.5.1. Concept: Communication of Testing Culture

To support their project’s contributors, project owners consciously changed
their behavior to better communicate the project’s testing culture. This
allowed it to di�use to developers, who would in turn adopt it and its
values.

Code Description
testing guidelines Providing developers with testing guidelines

makes the project’s testing culture explicit
and gives them a starting point to learn about
it.

active communication Project owners reported that they were trying
to actively communicate their project’s testing
requirements.

pride Some developers felt proud when they knew
that they obliged with a project’s testing cul-
ture.

direct exchanges Direct exchanges between developers on
GitHub were also said to be conductive to dif-
fusing testing culture.

having a test suite For developers, an existing test suite commu-
nicated that tests were indeed desired for new
contributions.

A.5.2. Concept: New Risks

Some project owners and contributors saw some risks in the testing style
that they perceived as prevalent on GitHub.

178

Code Description
false sense of security Some developers mentioned that test suites

could lead to a false sense of security, as
some might not check whether new contri-
butions that did not include any new tests
were even covered by existing tests.

happy path testing Some developers criticized what they
called a culture of “happy path testing” —
testing only desired behavior, but not un-
desirable behavior or edge cases.

defer testing for traction To help their project gain traction, some
project owners consciously deferred testing
and did not demand tests from contribu-
tors.

A.5.3. Concept: Exploration & Experimentation

For some, tests lowered the barriers to exploration and experimentation,
and, therefore, to contributing to a project.

Code Description
fast feedback through CI A continuous integration server provides

fast feedback when changing source code,
this supports experimentation.

language ecosystem Ruby was mentioned as having an ecosys-
tem that supported exploration and exper-
imentation through the easy development
and testing setup many projects provide.

drive-by commit The low barriers and the centralization of
GitHub allowed developers to make con-
tributions to a project without becoming
involved with it.

179

A.5.4. Concept: Reputation
Testing was perceived as a noble activity that could increase a developer’s
or a project’s reputation.

Code Description
finding work Some developers submitted pull-requests to re-

spected (and well-tested) projects to improve
their chances on the job market.

project reputation Some project owners felt that they would have to
write tests for their project so their projects’ and
their own reputations in the community would
not su�er.

quality as ad For companies, having tests in their open source
projects can be an advertisement for their prod-
ucts, but also for potential employees that are
looking for a company using good practices.

180

B. Mutual Assessment — Coding System

This appendix contains the coding system that was developed in the study
reported on in section 5.3. Each category contains concepts, which them-
selves contain codes. Some codes appeared in other concepts from time to
time; this appendix nests codes into the concepts they appeared in most
commonly. For readability, some codes are repeated across concepts, e.g.
when they applied to di�erent actors.

181

B.1. Category: Interaction

How do participants of the social programer ecosystem interact with each
other?

B.1.1. Concept: Assessment

Developers were assessing each other using di�erent signals.

Code Description
assess others Developers were assessing other developers.
trusting quant Some developers trusted the quantified activities

displayed on Masterbranch and Coderwall.
footprint Developers assessed others by what one developer

called their “coder footprint” — an intuitive grasp
of what kinds of technologies and projects some-
one was working on.

personal brand Some developers explicitly said that they were
managing their personal brands.

Similarly, recruiters were also assessing developers.

Code Description
seeking passion Some recruiters said they were looking for passion-

ate developers.
identifying learners Some recruiters said they were trying to identify

fast learners.
seeking diversity Some recruiters said they were looking for diver-

sity in developers.

B.1.2. Concept: Connecting

Developers used social media to connect with other developers.

182

Code Description
connecting interests Developers said they participated in social me-

dia to connect with others through common in-
terests.

personal network Some developers used social media to utilize per-
sonal connections and word-of-mouth.

global ties Some developers used social media for connect-
ing with developers outside of their own local
group.

enjoying recognition Developers used social media because they en-
joyed recognition from peers.

competition Developers used social media — and especially
Masterbranch or Coderwall — for competing
with others and comparing themselves with
them.

giving recognition Some developers said they participated in social
media to recognize good work of others.

motivating others Some developers took part in social media for
motivating peers to take part in open source.

B.1.3. Concept: Avoidance

Some developers consciously avoided certain areas of the social media space.

Code Description
avoiding recruiters Some developers actively tried to avoid recruiters.
avoiding aggressive
communities

Some developers consciously avoided aggressive
communities.

B.1.4. Concept: Filters

Recruiters described an approach to assessment that consisted of two layers:
they would first filter out potential candidates based on relatively superficial
signals.

183

Code Description
skill lists Recruiters used skill lists as a first filter when as-

sessing potential candidates.
certifications Recruiters used certifications as a first filter when

assessing potential candidates.
OSS activity check Open source activity and engagement sometimes

acted as a baseline check.
social media check Developers’ activities on GitHub, Twitter, and

StackOverflow were sometimes as more concrete
baseline checks.

generic SNS Some recruiters said they were using generic pro-
fessional networking services, such as LinkedIn.

assess youth Some recruiters openly said that they were assess-
ing developers based on youth, as young people
would be more open to new employers, relocating,
and other requirements of the technology industry.

B.1.5. Concept: Lacking Trust in Signals

After using filters (above), recruiters would dig deeper, as they did not trust
these simplified signals completely (see also: Concept: Assessment above).

Code Description
digging deeper Recruiters dug deeper after applying the afore-

mentioned filters.
good practices Recruiters used social media to observe developers

using good practices and took that as a sign for
good developers.

social skills Recruiters tried using social media to assess their
social skills from a distance.

endorsements Recruiters assessed developers based on endorse-
ments from others — such as followers on Twitter,
forks on GitHub, or the things other developers
said about a developer on social media.

184

B.1.6. Concept: Developer Scarcity
Recruiters observed a scarcity of desirable developers available for hire.

Code Description
passionates scarce Some recruiters said there was a scarcity of devel-

opers that are publicly involved and engaged.
personal network Some recruiters utilized their personal networks.
access to personal
network

Some recruiters said that the personal networks of
developers — observable e.g. on LinkedIn — were
a desirable asset to them.

OSS as reputation
proxy

Some recruiters said they used the open source
creations of developers and their dissemination in
public as a reputation proxy.

authenticity Some recruiters tried to maintain an authentic
presence in social media to reach and assess de-
velopers, to stand out, and to overcome the bad
reputation of recruiters among developers.

185

B.2. Category: Motivation

What are the di�erent actors’ reasons for participation in the social pro-
grammer ecosystem?

B.2.1. Concept: Passion

Developers were using social media because they allow them to follow their
passions.

Code Description
inspiration Developers said that exposure to high-profile de-

velopers inspired them.
new tech Developers were curios about new technology and

liked to try out new things.
enjoyment Developers thought the badges and the competi-

tion in social media — especially on Masterbranch
and Coderwall — were fun.

learning Developers were passionate to learn and liked to
get feedback on their self-improvement.

become diverse Developers used social media to become more di-
verse.

B.2.2. Concept: Assessment

Developers wanted to assess others and strived to improve their own visi-
bility and appearance.

Code Description
assessing others Developers assessed other actors — companies, re-

cruiters, and other developers.
visibility Developers tried to improve their visibility with

respect to recruiters and companies.
showing diversity Developers strived to show diversity in their social

media profiles.

186

B.2.3. Concept: Interaction with others

Developers said they liked interacting with others.

Code Description
liking people Developers liked connecting with and feeling re-

lated to interesting developers.
pride Developers felt proud when their achievements

were displayed on a social media site.
liking competition Developers liked the competition, e.g. on the

Coderwall leaderboard.
helping others Developers liked helping other developers.
liking collaborating Developers liked collaboration with other develop-

ers.
pushed by peers Some developers used social media because their

peers urged them to.
getting recognition Some developers used social media to get recog-

nized by the community.

B.2.4. Concept: Soft Skills

Recruiters were motivated to use social media for a deeper kind of assess-
ment: one that would allow them find out more about the “softer” skills of
developers.

Code Description
identifying passionates Recruiters tried to identify passionate and

well-rounded developers.
identifying learners Recruiters tried to identify developers that

were able to adapt to new technologies.
identifying socials Recruiters tried to identify socially adept de-

velopers.
completer picture Recruiters tried getting a more complete pic-

ture of potential candidates.

187

B.2.5. Concept: Pressure to Hire
Recruiters were under a pressure to find potential candidates: developers
as well as they time to find them were scarce.

Code Description
active courting Recruiters actively engaged with already other-

wise employed developers because of the tight job
market situation.

speed up hiring Recruiters used social media to speed up finding
new candidates.

188

B.3. Category: Problems

What problems do participants of the social programmer ecosystem en-
counter?

B.3.1. Concept: Pressure

Some developers felt overwhelmed by or left out of the social programmer
ecosystem.

Code Description
inferior Some developers felt inferior in face of high-profile

developers or felt being left out of the "in-crowd".
overwhelmed Some developers felt overwhelmed by constantly

having to keep up with new developments.
vocals Some developers thought that there was too much

focus on vocal high-profile developers in social me-
dia.

B.3.2. Concept: Reliability of signals

Many developers were aware that many social media signals might not be
reliable.

189

Code Description
hard to assess Developers said that signal in social media were

complicated to interpret, as the value of any repu-
tation metric depends on the givers’ reputations.

superficial Developers though that social media signals were
sometimes superficial, weak, or misleading.

manipulation Developers were unsure about whether signal were
manipulated and whether they should trust them.

backfiring Developers thought that simplified quantifications
such as badges on Coderwall might backfire, as
people should rather scrutinize the actual code on
GitHub, for example.

sensemaking Developers were still in the process of sensemaking
with regard to signals in social media.

B.3.3. Concept: Isolation

Some developers felt isolated from other communities, e.g. their local peers
or certain groups in social media.

Code Description
dislike aggression Some developers disliked aggressive communities.
isolated locally Some developers felt isolated locally.
recruiter chasm Some developers acknowledged communication

problems between developers and recruiters.

B.3.4. Concept: Reliability of Signals

Similar to developers, recruiters were also skeptical about the reliability of
social media signals.

190

Code Description
sensemaking Some recruiters were still trying to make sense of

the signals available in social media.
signal value Some recruiters said there was questionable value

in some of the signals in social media.
superficiality Some recruiters said some of the social media sig-

nals were superficial.
manipulation Some recruiters were worried whether social me-

dia signals could be manipulated and were unsure
whether they should trust them.

north america Some recruiters said the low adoption of social me-
dia signals outside of the US and Canada were a
problem when trying to use them somewhere else.

fashion Some recruiters thought there was a dangerous fo-
cus on short-lived fashions in social media.

B.3.5. Concept: Developer Scarcity

Recruiters encountered a set of problems related to the scarcity of develop-
ers in the job market.

Code Description
soft skills wanted Recruiters were looking to fulfill in-

creasing requirements regarding soft
skills.

no locals Recruiters had problems finding de-
velopers locally.

traditional recruiting insu�cient Some recruiters acknowledged that
more traditional recruiting strategies
failed them.

B.3.6. Concept: Isolation

Recruiters would sometimes express that they felt disconnected or isolated
from attractive developer communities.

191

Code Description
not connected Some recruiters felt that they were not con-

nected to the developer community.
nontechnical chasm Some recruiters acknowledged problems with

non-technical recruiters trying to recruit tech-
nical candidates.

lonely innovator Recruiters were aware that innovative employees
might feel isolated within their companies.

unattractive location Recruiters for companies in less attractive towns
were struggling to attract talent.

B.3.7. Concept: Matchmaking
Recruiters either tried to use social media or avoided using them to find
hires that would match a company’s culture.

Code Description
challenge tension Some recruiters felt a tension between companies

wanting “driven” developers and the possibly low
attractiveness of a company’s engineering prob-
lems.

mediation External recruiters said that their role was one of
mediation between developers and companies they
were recruiting for.

OSS not for all Some recruiters said that passion for open source
in developers may not be appropriate for all com-
panies.

192

B.4. Category: Impact

Which e�ects does participation in the social programmer ecosystem have
on its members and their behaviors?

B.4.1. Concept: Enjoying Interactions

Developers said they enjoyed the interactions that social media allowed
them to have with other developers.

Code Description
enjoying community Some developers felt excited about the developer

community in social media and enjoyed it.
enjoying feedback Developers enjoyed community feedback.
enjoying exposure Developers enjoyed community exposure.
motivating others Some developers were motivated to motivate

peers.
enjoying competition Developers enjoyed engaging in competition.
learning from others Developers liked learning from others.
learning community
norms

Developers used social media to learning the so-
cial norms of the community.

B.4.2. Concept: Assessment

Developers actively used and also provided signals that allowed them to
assess and connect with other developers.

193

Code Description
finding interesting peers Developers used social media signals and

quantified activity to find interesting
peers.

becoming inspired by others Developers used social media to be in-
spired by what other developers create.

showing diversity Developers used social media to show
their own diversity.

ambivalence towards signals Developers felt ambivalent towards so-
cial media signals and quantified activ-
ity.

B.4.3. Concept: Job Finding

Whereas some developers had built up professional networks they said they
could rely on should they need a new position, others said they were actively
using social media to make themselves more attractive to recruiters.

Code Description
own network for work Some developers used their own profes-

sional networks for finding a job.
showing social skills Some developers used social media to

show their social skills to recruiters.
quantification for recruiters Some developers engaged in social media

to communicate better with recruiters
and hoped to be better able to find a
job through their activities there.

assessing companies Developers used social media signals and
quantified activity to assess companies.

B.4.4. Concept: Self-improvement

Many developers used signals and mechanisms from social media to support
their own self-improvement.

194

Code Description
enjoying feedback Developers enjoyed quantified feedback on their

own achievements.
self-improvement Social media motivated developers to improve

themselves.
more diversity Social media motivated developers to become

more diverse.
cosmopolite Social media made developers feel more competent

and cosmopolite.

B.4.5. Concept: Developer Scarcity

In face of the developer scarcity, recruiters said that social media allowed
them to alleviate this to a degree.

Code Description
access to developers Recruiters felt social media provided them with

easier access to good developers and let them be-
come involved with them more easily.

candidates through
OSS

Recruiters used social media to find candidates
through their open source work.

candidates through
personal network

Recruiters found candidates through their per-
sonal networks, sometimes supported by social
media.

B.4.6. Concept: Assessment Accuracy

Some recruiters found that the social transparency in social media allowed
them to more thoroughly assess developers, e.g. to get a feel for their
personalities.

195

Code Description
assessment through
quantification

Recruiters felt they were able to create a more
complete assessment of developers through quan-
tified activity and that they were able to do so
more easily.

social validation Recruiters thought that assessment was easier
through social validation available through social
media.

assessing cultural
fit

Recruiters felt that social media allowed them to
assess cultural fit and social competence for devel-
opers.

B.4.7. Concept: Supporting Passion

Some companies actively used social media to support their employees’
passions.

Code Description
great company Developers felt proud about their companies

and liked that their companies’ achievements
were visible in social media.

employee motivation Social media allowed employees of companies
to motivate one another.

driving change Developers said that participation in social me-
dia supported them in driving innovation and
change in their companies.

B.4.8. Concept: Outside Assessment

Some companies used social media to improve their image for potential
candidates.

196

Code Description
company image Internal recruiters felt that social media helped

improving the perception of their companies by
external developers.

company exposure Internal recruiters felt that social media helped to
open doors and increased exposure for their com-
panies.

197

Curriculum Vitae

Leif Singer
born on September 16th 1979 in Hannover, Germany

Education

04/2008–02/2013 Graduate Student in Computer Science,
Leibniz Universität Hannover, Germany

10/2005–01/2008 Master of Science in Computer Science,
Leibniz Universität Hannover, Germany

10/2002–09/2005 Bachelor of Science in Computer Science,
Leibniz Universität Hannover, Germany

03/2001–08/2001 Apprenticeship Informatics Assistant Multimedia
(aborted),
b.i.b. e.V., Hannover, Germany

09/1986–05/1999 Abitur (general eligibility of university admission),
Elementary School Pestalozzistrasse and Erich Kästner
Gymnasium, Laatzen, Germany

Professional Experience

04/2008–02/2013 Researcher at Software Engineering Group, Leibniz
Universität Hannover, Germany

03/2006–03/2008 Student Assistant at Software Engineering Group, Leibniz
Universität Hannover, Germany

05/2004–12/2005 Student Assistant at OptecNet Deutschland e.V. and
Laserzentrum Hannover e.V., Hannover, Germany

08/2001–09/2002 Software Developer at A&L GmbH, Hannover, Germany
12/1999–01/2001 Co-Founder and Software Developer at wap3 Technologies

GmbH, Cologne, Germany
08/1999–07/2000 Civil Service at Margarethenhof, Laatzen, Germany

199

Bibliography

[1] media. http://www.merriam-webster.com/dictionary/media,
2012. [Online; accessed Dec 1 2012]. 31

[2] M. Abdolrasulnia, B. Collins, L. Casebeer, T. Wall, C. Spettell,
M. Ray, N. Weissman, and J. Allison. Using email reminders to en-
gage physicians in an Internet-based CME intervention. BMC medical
education, 4(1):17, 2004. 119

[3] N. Ahmadi, M. Jazayeri, F. Lelli, and S. Nesic. A survey of social
software engineering. In Automated Software Engineering - Work-
shops, 2008. ASE Workshops 2008. 23rd IEEE/ACM International
Conference on, pages 1 –12, sept. 2008. 39

[4] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1977. 91, 92

[5] A. Alvero, B. Bucklin, and J. Austin. An objective review of the
e�ectiveness and essential characteristics of performance feedback in
organizational settings (1985-1998). Journal of Organizational Be-
havior Management, 21(1):3–29, 2001. 130

[6] T. Amabile and S. Kramer. The progress principle: Using small wins
to ignite joy, engagement, and creativity at work. Harvard Business
Press, 2011. 2, 92, 109, 120, 121, 129, 169

[7] J. Antin and E. Churchill. Badges in Social Media: A Social Psycho-
logical Perspective. In CHI 2011 Gamification Workshop Proceedings,
Vancouver, BC, Canada, 2011. 134, 135

[8] B. Balzer, M. Litoiu, H. Müller, D. Smith, M.-A. Storey, S. Tilley, and
K. Wong. 4th International Workshop on Adoption-Centric Software
Engineering. In Proceedings of the 26th International Conference on
Software Engineering (ICSE’04), 2004. 18

201

http://www.merriam-webster.com/dictionary/media

[9] A. Bandura. Social Learning Theory. Prentice Hall, Englewood Cli�s,
New Jersey, USA, 1977. 10, 15, 115, 117, 136

[10] O. Barzilay. Example Embedding: On the Diversity of Example Usage
in Professional Software Development. PhD thesis, Tel Aviv Univer-
sity, 2011. 127, 137

[11] V. R. Basili, G. Caldiera, and H. D. Rombach. The Experience Fac-
tory. In Proceedings of the 14th annual Software Engineering Work-
shop, 1989. 93

[12] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp. Moti-
vation in Software Engineering: A systematic literature review. In-
formation and Software Technology, 50(9-10):860–878, 2008. 26

[13] A. Begel, R. DeLine, and T. Zimmermann. Social media for software
engineering. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER ’10, pages 33–38, New York,
NY, USA, 2010. ACM. 39

[14] Y. Benkler. The Penguin and the Leviathan: How Cooperation Tri-
umphs over Self-Interest. Random House, Inc., 2011. 117, 162, 163,
169

[15] D. Bertram, A. Voida, S. Greenberg, and R. Walker. Communica-
tion, collaboration, and bugs: the social nature of issue tracking in
small, collocated teams. In Proceedings of the 2010 ACM conference
on Computer supported cooperative work, CSCW ’10, pages 291–300,
New York, NY, USA, 2010. ACM. 3, 29, 38, 102

[16] B. Boehm. Software engineering economics. Prentice-Hall, 1981. 25

[17] B. W. Boehm and R. Ross. Theory-W Software Project Management
Principles and Examples. IEEE Trans. Softw. Eng., 15(7):902–916,
July 1989. 165

[18] E. Bouwers, J. Visser, and A. van Deursen. Getting what you mea-
sure. Communications of the ACM, 55(7):54–59, 2012. 98, 132, 156

[19] G. Bowker and S. Star. Sorting things out: classification and its
consequences. The MIT Press, Cambridge, MA, 2000. 72

202

[20] d. m. boyd and N. B. Ellison. Social Network Sites: Definition, His-
tory, and Scholarship. Journal of Computer-Mediated Communica-
tion, 13(1):210–230, 2007. 66

[21] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection
of collaboration conflicts. In Proc. ESEC/FSE, pages 168–178, 2011.
38, 139

[22] M. Burke, C. Marlow, and T. Lento. Feed me: motivating newcomer
contribution in social network sites. In Proc. CHI, pages 945–954,
2009. 36, 115

[23] V. Bush. As We May Think. Atlantic Monthly, 176(1):101–108, July
1945. 29

[24] D. T. Campbell. Assessing the impact of planned social change. Eval-
uation and Program Planning, 2(1):67–90, 1979. 98, 114, 122, 123

[25] L. V. Casaló, J. Cisneros, C. Flavián, and M. Guinalíu. Reputa-
tion in Open Source Software Virtual Communities. In Proc. IADIS
International Conference e-Commerce, 2008. 122

[26] D. Centola. The spread of behavior in an online social network ex-
periment. Science, 329(5996):1194, 2010. 36, 103

[27] F. K. Chan and J. Y. Thong. Acceptance of agile methodologies: A
critical review and conceptual framework. Decision Support Systems,
46(4):803–814, 2009. 42, 43

[28] C. Cheshire and J. Antin. The social psychological e�ects of feed-
back on the production of Internet information pools. Journal of
Computer-Mediated Communication, 13(3):705–727, 2008. 121, 125

[29] J. Cohen. Modern Code Review. In A. Oram and G. Wilson, editors,
Making Software: What Really Works, and Why We Believe It, pages
329–338. O’Reilly Media, Inc., 2010. 42

[30] J. Corbin and A. Strauss. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage Publications, 3rd
edition, 2008. 74

[31] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke. A Systematic Survey of Program Comprehension through

203

Dynamic Analysis. Software Engineering, IEEE Transactions on,
35(5):684 –702, 2009. 5

[32] J. Cranefield, P. Yoong, and S. Hu�. Driving Change Through Bro-
kering Practices In An Online Community Ecosystem. In PACIS 2011
Proceedings, 2011. 113

[33] J. W. Creswell and V. L. P. Clark. Designing and Conducting Mixed
Methods Research. SAGE Publications, 2010. 4

[34] K. Crowston, K. Wei, Q. Li, and J. Howison. Core and periphery
in Free/Libre and Open Source software team communications. In
Institute for Software Research, page Paper 489, 2006. 60

[35] Csíkszentmihályi. Flow: The Psychology of Optimal Experience.
Harper Perennial Modern Classics, 2008. 22

[36] R. Cuel, O. Morozova, M. Rohde, E. Simperl, K. Siorpaes,
O. Tokarchuk, T. Wiedenhoefer, F. Yetim, and M. Zamarian. Motiva-
tion mechanisms for participation in human-driven semantic content
creation. International Journal of Knowledge Engineering and Data
Mining, 1(4):331–349, 2011. 163

[37] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes. Fresh faces in
the crowd: turnover, identity, and commitment in online groups. In
Proceedings of the ACM 2012 conference on Computer Supported Co-
operative Work, CSCW ’12, pages 245–248, New York, NY, USA,
2012. ACM. 131

[38] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
GitHub: transparency and collaboration in an open software reposi-
tory. In Proceedings of the ACM 2012 conference on Computer Sup-
ported Cooperative Work, pages 1277–1286. ACM, 2012. 39, 45, 49,
67, 84, 158

[39] B. Dagenais and M. P. Robillard. Creating and evolving developer
documentation: understanding the decisions of open source contrib-
utors. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, FSE ’10, pages
127–136, New York, NY, USA, 2010. ACM. 39

204

[40] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the
wild: Why communication breakdowns occur. In Second IEEE In-
ternational Conference on Global Software Engineering, pages 81–90.
IEEE, 2007. 118, 131

[41] T. G. P. Davenport, editor. Knowledge Management Case Book -
Best Practises. Publicis MCD, John Wiley & Sons, 2000. 164

[42] C. R. de Souza and D. Redmiles. The Awareness Network: To Whom
Should I Display My Actions? And, Whose Actions Should I Moni-
tor? In L. Bannon, I. Wagner, C. Gutwin, R. Harper, and K. Schmidt,
editors, ECSCW 2007, pages 99–117. Springer London, 2007. 131

[43] E. Deci. E�ects of externally mediated rewards on intrinsic moti-
vation. Journal of personality and Social Psychology, 18(1):105–115,
1971. 22

[44] E. Deci and R. Ryan. Handbook of self-determination research. The
University of Rochester Press, 2002. 21, 114, 119, 121, 122, 123, 164

[45] E. L. Deci, G. Betley, J. Kahle, L. Abrams, and J. Porac. When
Trying to Win: Competition and Intrinsic Motivation. Personality
and Social Psychology Bulletin, 7(1):79–83, 1981. 124

[46] T. DeMarco and T. Lister. Peopleware. Dorset House Pub., 1987. 26

[47] W. Deming. Out of the Crisis. MIT Press, 2000. 93

[48] S. Dencheva, C. R. Prause, and W. Prinz. Dynamic Self-moderation
in a Corporate Wiki to Improve Participation and Contribution Qual-
ity. In Proc. ECSCW. Springer, New York, USA, 2011. 114, 121, 165

[49] S. Deterding. Gamification: designing for motivation. interactions,
19(4):14–17, July 2012. 164

[50] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design
elements to gamefulness: defining “gamification”. In Proceedings of
the 15th International Academic MindTrek Conference: Envisioning
Future Media Environments, MindTrek ’11, pages 9–15, New York,
NY, USA, 2011. ACM. 39, 40, 163

[51] P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on

205

Computer-supported cooperative work, CSCW ’92, pages 107–114,
New York, NY, USA, 1992. ACM. 33

[52] S. Draxler and G. Stevens. Supporting the Collaborative Appropri-
ation of an Open Software Ecosystem. Computer Supported Cooper-
ative Work (CSCW), 20:403–448, 2011. 10.1007/s10606-011-9148-9.
81

[53] C. Dweck. Mindset: The new psychology of success. Ballantine Books,
2007. 126, 130

[54] C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and
experiences. Commun. ACM, 34(1):39–58, Jan. 1991. 30

[55] N. B. Ellison and danah boyd. Sociality through Social Network Sites.
In W. H. Dutton, editor, The Oxford Handbook of Internet Studies
(in press). Oxford University Press, 2013. 32, 46

[56] T. Erickson and W. A. Kellogg. Social translucence: an approach
to designing systems that support social processes. ACM Trans.
Comput.-Hum. Interact., 7(1):59–83, Mar. 2000. 34, 67

[57] T. Erickson, D. N. Smith, W. A. Kellogg, M. La�, J. T. Richards,
and E. Bradner. Socially translucent systems: social proxies, persis-
tent conversation, and the design of “babble”. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, CHI
’99, pages 72–79, New York, NY, USA, 1999. ACM. 34

[58] R. Farzan, J. M. DiMicco, D. R. Millen, C. Dugan, W. Geyer, and
E. A. Brownholtz. Results from deploying a participation incentive
mechanism within the enterprise. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’08, pages
563–572, New York, NY, USA, 2008. ACM. 123

[59] J.-M. Favre, J. Estublier, and R. Sanlaville. Tool Adoption Issues in
a Very Large Software Company. In Proceedings of 3rd International
Workshop on AdoptionCentric Software Engineering, volume 9, pages
81–89, 2003. 102

[60] B. Fitzgerald. The use of systems development methodologies in prac-
tice: a field study. Information Systems Journal, 7(3):201–212, 1997.
42, 43

206

[61] B. Fitzgerald. An empirical investigation into the adoption of systems
development methodologies. Information & Management, 34(6):317–
328, 1998. 1, 42, 43

[62] B. J. Fogg. Persuasive Technology: Using Computers to Change What
We Think and Do. Morgan Kaufmann, 2002. 2, 92, 118, 163

[63] B. J. Fogg. A behavior model for persuasive design. In Proceedings of
the 4th international Conference on Persuasive Technology, page 40.
ACM, 2009. 119, 128

[64] D. Foster, C. Linehan, B. Kirman, S. Lawson, and G. James. Mo-
tivating physical activity at work: using persuasive social media for
competitive step counting. In Proc. MindTrek, pages 111–116. ACM,
2010. 115, 147

[65] J. Freyne, M. Jacovi, I. Guy, and W. Geyer. Increasing engagement
through early recommender intervention. In Proceedings of the third
ACM conference on Recommender systems, RecSys ’09, pages 85–92,
New York, NY, USA, 2009. ACM. 103

[66] D. Fudenberg and J. Tirole. Game theory. MIT Press, 1991. 163

[67] D. Funder. On the accuracy of personality judgment: a realistic
approach. Psychological review, 102(4):652, 1995. 83

[68] M. Gagné and E. L. Deci. Self-determination theory and work mo-
tivation. Journal of Organizational Behavior, 26(4):331–362, 2005.
21

[69] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley
Publishing Company, 1995. 42, 92

[70] E. Geller, T. Berry, T. Ludwig, R. Evans, M. Gilmore, and S. Clarke.
A conceptual framework for developing and evaluating behavior
change interventions for injury control. Health Education Research,
5(2):125–137, 1990. 2

[71] E. Gilbert. Designing social translucence over social networks. In
Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems, CHI ’12, pages 2731–2740, New York, NY,
USA, 2012. ACM. 34, 35

207

[72] T. Gilbert. Human Competence: Engineering Worthy Performance.
McGraw-Hill, 1978. 97

[73] A. Girgensohn and A. Lee. Making web sites be places for social
interaction. In Proceedings of the 2002 ACM conference on Computer
supported cooperative work, CSCW ’02, pages 136–145, New York,
NY, USA, 2002. ACM. 102

[74] E. Gleave, H. Welser, T. Lento, and M. Smith. A Conceptual and Op-
erational Definition of ’Social Role’ in Online Community. In System
Sciences, 2009. HICSS ’09. 42nd Hawaii International Conference
on, pages 1 –11, jan. 2009. 67

[75] M. Godfrey and C. Kapser. Copy-Paste as a Principled Engineering
Tool. In A. Oram and G. Wilson, editors, Making Software: What
Really Works, and Why We Believe It, pages 531–544. O’Reilly Me-
dia, Inc., 2010. 127

[76] S. Goel, D. J. Watts, and D. G. Goldstein. The structure of online
di�usion networks. In Proceedings of the 13th ACM Conference on
Electronic Commerce, EC ’12, pages 623–638, New York, NY, USA,
2012. ACM. 103

[77] A. Goldberg. Programmer as Reader. IEEE Software, 4:62–70, 1987.
41

[78] M. S. Granovetter. The Strength of Weak Ties. American Journal
of Sociology, 78(6):1360–1380, May 1973. 14, 113

[79] M. Greiler, A. v. Deursen, and M.-A. Storey. Test confessions: a
study of testing practices for plug-in systems. In Proceedings of the
2012 International Conference on Software Engineering, ICSE 2012,
pages 244–254, Piscataway, NJ, USA, 2012. IEEE Press. 5

[80] J. Grudin. Computer-supported cooperative work: history and focus.
Computer, 27(5):19–26, may 1994. 30, 33

[81] A. Guzzi and A. Begel. Facilitating communication between engineers
with CARES. In Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 1367–1370, Piscataway, NJ,
USA, 2012. IEEE Press. 38, 102, 118

208

[82] A. M. Halavais. A Genealogy of Badges. Information, Communication
& Society, 15(3):354–373, 2012. 115, 122, 134, 135

[83] J. Hamari and V. Eranti. Framework for designing and evaluating
game achievements. Proc. DiGRA 2011: Think Design Play, 2011.
115, 122, 134, 135

[84] B. C. Hardgrave, F. D. Davis, and C. K. Riemenschneider. In-
vestigating Determinants of Software Developers’ Intentions to Fol-
low Methodologies. Journal of Management Information Systems,
20(1):123–151, 2003. 1, 42, 43, 44

[85] J. Henrich, S. Heine, and A. Norenzayan. The weirdest people in the
world? Behavioral and Brain Sciences, 33(2-3):61–83, 2010. 3, 110

[86] G. Hsieh, I. Li, A. Dey, J. Forlizzi, and S. E. Hudson. Using visualiza-
tions to increase compliance in experience sampling. In Proceedings of
the 10th international conference on Ubiquitous computing, UbiComp
’08, pages 164–167, New York, NY, USA, 2008. ACM. 120

[87] J. Iivari. Why are CASE tools not used? Commun. ACM, 39(10):94–
103, Oct. 1996. 18

[88] J. Jung, C. Schneider, and J. Valacich. Enhancing the motivational
a�ordance of information systems: The e�ects of real-time perfor-
mance feedback and goal setting in group collaboration environments.
Management Science, 56(4):724–742, 2010. 127, 131

[89] H. Kawasaki, A. Yamamoto, H. Kurasawa, H. Sato, M. Nakamura,
and H. Matsumura. Top of worlds: method for improving motivation
to participate in sensing services. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pages 594–595,
New York, NY, USA, 2012. ACM. 124

[90] J. H. Kietzmann, K. Hermkens, I. P. McCarthy, and B. S. Silvestre.
Social media? Get serious! Understanding the functional building
blocks of social media. Business Horizons, 54(3):241 – 251, 2011. 31

[91] A. J. Kim. Building community on the Web: Secret strategies for
successful online communities. Peachpit Press, Berkeley, CA, 2000.
128

209

[92] B. Kitchenham. Procedures for Performing Systematic Reviews.
Technical Report Keele University Technical Report TR/SE-0401,
Software Engineering Group, Department of Computer Science, Keele
University, 2004. 5, 107

[93] R. Kivetz, O. Urminsky, and Y. Zheng. The Goal-Gradient Hypoth-
esis Resurrected: Purchase Acceleration, Illusionary Goal Progress,
and Customer Retention. Journal of Marketing Research, 43(1):39–
58, 2006. 129

[94] K. A. Kozar. Adopting Systems Development Methods: An Ex-
ploratory Study. Journal of Management Information Systems,
5(4):73–86, 1989. 43

[95] R. E. Kraut, P. Resnick, S. Kiesler, Y. Ren, Y. Chen, M. Burke,
N. Kittur, J. Riedl, and J. Konstan. Building Successful Online Com-
munities: Evidence-Based Social Design. The MIT Press, 2012. 161,
162, 169

[96] S. Kuznetsov. Motivations of contributors to Wikipedia. SIGCAS
Comput. Soc., 36(2), June 2006. 67

[97] I. Kwan and D. Damian. The hidden experts in software-engineering
communication (NIER track). In Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE ’11, pages 800–803,
New York, NY, USA, 2011. ACM. 103

[98] C. Lampe and P. Resnick. Slash(dot) and burn: distributed mod-
eration in a large online conversation space. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pages 543–550, New York, NY, USA, 2004. ACM. 133

[99] R. Landers and R. Callan. Casual Social Games as Serious Games:
The Psychology of Gamification in Undergraduate Education and
Employee Training. Serious Games and Edutainment Applications,
pages 399–423, 2011. 98, 115, 122, 134, 135

[100] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaino. Collab-
oration Tools for Global Software Engineering. Software, IEEE,
27(2):52–55, march-april 2010. 3, 37

210

[101] M. Lanza, L. Hattori, and A. Guzzi. Supporting Collaboration Aware-
ness with Real-Time Visualization of Development Activity. In 14th
European Conference on Software Maintenance and Reengineering
(CSMR), pages 202–211, march 2010. 38

[102] M. Lavallée and P. N. Robillard. The impacts of software process
improvement on developers: a systematic review. In Proceedings of
the 2012 International Conference on Software Engineering, ICSE
2012, pages 113–122, Piscataway, NJ, USA, 2012. IEEE Press. 10,
42, 43, 120

[103] J. Lave and E. Wenger. Situated learning: Legitimate peripheral par-
ticipation. Cambridge University Press, 1991. 60, 81

[104] J. Licklider and R. Taylor. The computer as a communication device.
Science and technology, 76(2):2, 1968. 29

[105] O. Liechti. Awareness and the WWW: an overview. SIGGROUP
Bull., 21(3):3–12, Dec. 2000. 33

[106] A. Lih. Wikipedia as Participatory journalism: reliable sources? met-
rics for evaluating collaborative media as a news resource. In In Pro-
ceedings of the 5th International Symposium on Online Journalism,
pages 16–17, 2004. 67

[107] K. Ling, G. Beenen, P. Ludford, X. Wang, K. Chang, X. Li, D. Cosley,
D. Frankowski, L. Terveen, A. Rashid, P. Resnick, and R. Kraut.
Using social psychology to motivate contributions to online commu-
nities. Journal of Computer-Mediated Communication, 10(4), 2005.
127

[108] E. A. Locke and G. P. Latham. Building a practically useful theory
of goal setting and task motivation: A 35-year odyssey. American
Psychologist, 57(9):705, 2002. 119, 122, 126, 128, 129, 130, 134, 135

[109] S. Lohmann, S. Dietzold, P. Heim, and N. Heino. A Web Platform for
Social Requirements Engineering. In J. Münch and P. Liggesmeyer,
editors, Software Engineering (Workshops), volume 150 of LNI, pages
309–315. GI, 2009. 38

[110] C. López, R. Farzan, and P. Brusilovsky. Personalized incremen-
tal users’ engagement: driving contributions one step forward. In

211

Proceedings of the 17th ACM international conference on Supporting
group work, pages 189–198. ACM, 2012. 129

[111] J. Lou, K. H. Lim, Y. Fang, and J. Z. Peng. Drivers Of Knowledge
Contribution Quality And Quantity In Online Question And Answer-
ing Communities. In PACIS 2011 Proceedings, 2011. 114

[112] P. Louridas. Using wikis in software development. Software, IEEE,
23(2):88 – 91, march-april 2006. 39

[113] F. C. Lunenburg. Goal-Setting Theory of Motivation. International
Journal of Management, Business, and Administration, 15(1):1–6,
2011. 126, 130

[114] K. Luther, K. Caine, K. Ziegler, and A. Bruckman. Why it works
(when it works): success factors in online creative collaboration. In
Proceedings of the 16th ACM international conference on Supporting
group work, GROUP ’10, pages 1–10, New York, NY, USA, 2010.
ACM. 109

[115] D. MacKenzie and J. Wajcman, editors. The Social Shaping of Tech-
nology. Open University Press, 2nd edition, 1999. 137, 168

[116] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann.
Design lessons from the fastest q&a site in the west. In Proceedings of
the 2011 annual conference on Human factors in computing systems,
pages 2857–2866. ACM, 2011. 39, 114, 115, 121

[117] A. Mazarakis and C. van Dinther. Feedback mechanisms and their
impact on motivation to contribute to wikis in higher education. In
Proceedings of the 7th International Symposium on Wikis and Open
Collaboration, WikiSym ’11, pages 215–216, New York, NY, USA,
2011. ACM. 124

[118] S. McConnell. Avoiding classic mistakes. IEEE Software, 13(5):111–
112, 1996. 26

[119] M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather:
Homophily in social networks. Annual review of sociology, 27:415–
444, 2001. 14

212

[120] L. A. Meyerovich and A. S. Rabkin. Socio-PLT: principles for pro-
gramming language adoption. In Proceedings of the ACM interna-
tional symposium on New ideas, new paradigms, and reflections on
programming and software, Onward! ’12, pages 39–54, New York,
NY, USA, 2012. ACM. 161

[121] S. P. Mikawa, S. K. Cunnington, and S. A. Gaskins. Removing barri-
ers to trust in distributed teams: understanding cultural di�erences
and strengthening social ties. In Proceedings of the 2009 international
workshop on Intercultural collaboration, IWIC ’09, pages 273–276,
New York, NY, USA, 2009. ACM. 37

[122] A. Monroy-Hernández, B. M. Hill, J. Gonzalez-Rivero, and d. boyd.
Computers can’t give credit: how automatic attribution falls short in
an online remixing community. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’11, pages
3421–3430, New York, NY, USA, 2011. ACM. 121

[123] M. Montola, T. Nummenmaa, A. Lucero, M. Boberg, and H. Ko-
rhonen. Applying game achievement systems to enhance user expe-
rience in a photo sharing service. In Proceedings of the 13th Inter-
national MindTrek Conference: Everyday Life in the Ubiquitous Era,
MindTrek ’09, pages 94–97, New York, NY, USA, 2009. ACM. 123

[124] E. Murphy-Hill and G. Murphy. Peer interaction e�ectively, yet infre-
quently, enables programmers to discover new tools. In Proceedings of
the ACM 2011 conference on Computer supported cooperative work,
pages 405–414. ACM, 2011. 81

[125] N. Nagappan, E. Maximilien, T. Bhat, and L. Williams. Realizing
quality improvement through test driven development: results and
experiences of four industrial teams. Empirical Software Engineering,
13:289–302, 2008. 10.1007/s10664-008-9062-z. 90

[126] B. A. Nardi. A Small Matter of Programming. MIT Press, 1993. 81

[127] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. What Makes a
Good Code Example? A Study of Programming Q&A in StackOver-
flow. In 28th IEEE International Conference on Software Mainte-
nance (ICSM), 2012. 127, 128

213

[128] S. Niebuhr and D. Kerkow. Captivating Patterns – A First Valida-
tion. In Y. Kort, W. IJsselsteijn, C. Midden, B. Eggen, and B. Fogg,
editors, Persuasive Technology, volume 4744 of Lecture Notes in Com-
puter Science, pages 48–54. Springer Berlin Heidelberg, 2007. 130

[129] J. C. Nunes and X. Drèze. The Endowed Progress E�ect: How Arti-
ficial Advancement Increases E�ort. Journal of Consumer Research,
32(4):pp. 504–512, 2006. 129

[130] R. O�en and R. Je�ery. Establishing software measurement pro-
grams. Software, IEEE, 14(2):45–53, mar/apr 1997. 44

[131] J. Olson, J. Howison, and K. Carley. Paying Attention to Each Other
in Visible Work Communities: Modeling Bursty Systems of Multiple
Activity Streams. In 2010 IEEE Second International Conference on
Social Computing (SocialCom), pages 276 –281, Aug 2010. 131

[132] A. Oram and G. Wilson, editors. Making Software: What Really
Works, and Why We Believe It. O’Reilly Media, Inc., 2010. 1

[133] D. Pagano and W. Maalej. How do developers blog?: an exploratory
study. In Proceedings of the 8th Working Conference on Mining Soft-
ware Repositories, MSR ’11, pages 123–132, New York, NY, USA,
2011. ACM. 39, 114

[134] S. Park and F. Maurer. The role of blogging in generating a software
product vision. In Proceedings of the 2009 ICSE Workshop on Co-
operative and Human Aspects on Software Engineering, CHASE ’09,
pages 74–77, Washington, DC, USA, 2009. IEEE Computer Society.
39

[135] C. Parnin and S. Rugaber. Programmer information needs after mem-
ory failure. In 2012 IEEE 20th International Conference on Program
Comprehension (ICPC), pages 123–132. IEEE, 2012. 119

[136] C. Parnin and C. Treude. Measuring API documentation on the
web. In Proceedings of the 2nd International Workshop on Web 2.0
for Software Engineering, Web2SE ’11, pages 25–30, New York, NY,
USA, 2011. ACM. 39

[137] E. B. Passos, D. B. Medeiros, P. A. S. Neto, and E. W. G. Clua.
Turning Real-World Software Development into a Game. In SBC -
Proceedings of SBGames 2011, 2011. 164

214

[138] M. Peters. Konzeption und Implementierung eines erweiterbaren Dig-
italen Sozialen Netzwerks. Bachelorarbeit, Leibniz Universität Han-
nover, Fachgebiet Software Engineering, 9 2010. 101

[139] S. Pfleeger. Lessons learned in building a corporate metrics program.
Software, IEEE, 10(3):67 –74, may 1993. 44

[140] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schnei-
der. Creating a Shared Understanding of Testing Culture on a Social
Coding Site. In Proceedings of the 35th International Conference on
Software Engineering (to appear), 2013. ii, 39, 45, 101, 112, 113, 127,
128, 137

[141] J. Preece and B. Shneiderman. The Reader-to-Leader Framework:
Motivating technology-mediated social participation. AIS Transac-
tions on Human-Computer Interaction, 1(1):13–32, 2009. 128

[142] R. Priedhorsky, J. Chen, S. T. K. Lam, K. Panciera, L. Terveen, and
J. Riedl. Creating, destroying, and restoring value in wikipedia. In
Proceedings of the 2007 international ACM conference on Supporting
group work, GROUP ’07, pages 259–268, New York, NY, USA, 2007.
ACM. 67

[143] A. M. Rashid, K. Ling, R. D. Tassone, P. Resnick, R. Kraut, and
J. Riedl. Motivating participation by displaying the value of contri-
butions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’06, pages 955–958, New York, NY, USA,
2006. ACM. 120

[144] J. Reeve and E. L. Deci. Elements of the Competitive Situation
that A�ect Intrinsic Motivation. Personality and Social Psychology
Bulletin, 22(1):24–33, 1996. 124

[145] M. Restivo and A. van de Rijt. Experimental Study of Informal
Rewards in Peer Production. PLoS ONE, 7(3):e34358, 2012. 135

[146] C. Riemenschneider, B. Hardgrave, and F. Davis. Explaining soft-
ware developer acceptance of methodologies: A comparison of five
theoretical models. IEEE Transactions on Software Engineering,
28(12):1135–1145, 2002. 1, 42, 43, 44, 92

215

[147] K. Riemer, A. Richter, and P. Seltsikas. Enterprise Microblogging:
Procrastination or productive use? In AMCIS 2010 Proceedings,
2010. 113

[148] P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German.
Contemporary Peer Review in Action: Lessons from Open Source
Development. IEEE Software, 29(6):56–61, Nov 2012. 132, 133

[149] E. M. Rogers. Di�usion of Innovations. Free Press, 5th edition, 2003.
1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 43, 62, 81, 85, 91, 96,
112, 113, 114, 116, 117, 118, 119, 120, 121, 123, 126, 127, 128, 131,
136, 137

[150] R. M. Ryan and E. L. Deci. Self-Determination Theory and the
Facilitation of Intrinsic Motivation, Social Development, and Well-
Being. American Psychologist, 51(1):68–78, 2000. 10, 21, 22, 23, 24,
25

[151] R. M. Ryan and E. L. Deci. Overview of self-determination theory: an
organismic dialectical perspective. In E. L. Deci and R. M. Ryan, edi-
tors, Handbook of self-determination research, pages 3–33. University
of Rochester Press, 2002. 21, 22

[152] R. Sach and M. Petre. Feedback: How does it impact software en-
gineers? In 2012 5th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), pages 129–131.
IEEE, 2012. 26, 129

[153] R. Sach, H. Sharp, and M. Petre. Software Engineers’ Perceptions
of Factors in Motivation: The Work, People, Obstacles. In Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 368–371, 2011. 26

[154] M. J. Salganik, P. S. Dodds, and D. J. Watts. Experimental Study
of Inequality and Unpredictability in an Artificial Cultural Market.
Science, 311(5762):854–856, 2006. 117

[155] M. J. Salganik and D. J. Watts. Leading the Herd Astray: An Ex-
perimental Study of Self-fulfilling Prophecies in an Artificial Cultural
Market. Social Psychology Quarterly, 71(4):338–355, 2008. 117

216

[156] K. Schneider. LIDs: A Light-Weight Approach to Experience Elic-
itation and Reuse. In F. Bomarius and M. Oivo, editors, Product
Focused Software Process Improvement, volume 1840/2000 of Lecture
Notes in Computer Science, pages 407–424. Springer, 2000. 104, 142

[157] D. Schuler and A. Namioka. Participatory Design: Perspectives on
Systems Design. Taylor & Francis Group, 1993. 163

[158] P. Schultz, J. Nolan, R. Cialdini, N. Goldstein, and V. Griskevi-
cius. The constructive, destructive, and reconstructive power of social
norms. Psychological Science, 18(5):429–434, 2007. 117

[159] D. H. Schunk and C. W. Swartz. Goals and progress feedback: E�ects
on self-e�cacy and writing achievement. Contemporary Educational
Psychology, 18(3):337–354, 1993. 130

[160] A. J. Sellen, R. Murphy, and K. L. Shaw. How knowledge workers
use the web. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’02, pages 227–234, New York,
NY, USA, 2002. ACM. 102

[161] C. Shah and G. Marchionini. Awareness in collaborative information
seeking. Journal of the American Society for Information Science
and Technology, 61(10):1970–1986, 2010. 34

[162] L. Singer, F. F. Filho, B. Cleary, C. Treude, M.-A. Storey, and
K. Schneider. Mutual Assessment in the Social Programmer Ecosys-
tem: An Empirical Investigation of Developer Profile Aggregators.
In Proceedings of the ACM 2013 conference on Computer Supported
Cooperative Work and Social Computing (in press), CSCW ’13, New
York, NY, USA, 2013. ACM. ii, 35, 36, 40, 66, 121, 122, 134, 135

[163] L. Singer and M. Peters. Hallway: ein Erweiterbares Digitales Soziales
Netzwerk. In R. Reussner, M. Grund, A. Oberweis, and W. Tichy,
editors, Software Engineering 2011, volume P-183 of Lecture Notes
in Informatics (LNI) — Proceedings, pages 147–158, Bonn, 2011.
Gesellschaft für Informatik. 101

[164] L. Singer and K. Schneider. It was a Bit of a Race: Gamification of
Version Control. In Proceedings of the 2nd international workshop on
Games and software engineering, 2012. 99, 154

217

[165] R. Spier. The history of the peer-review process. Trends in Biotech-
nology, 20(8):357–357, 2002. 132

[166] K. Stapel and K. Schneider. Managing Knowledge on Communication
and Information Flow in Global Software Projects. Expert Systems,
Special Issue on Knowledge Engineering in Global Software Develop-
ment, 2012. 29

[167] K. Stein and C. Hess. Does it matter who contributes: a study
on featured articles in the german wikipedia. In Proceedings of the
eighteenth conference on Hypertext and hypermedia, HT ’07, pages
171–174, New York, NY, USA, 2007. ACM. 67

[168] I. Steinmacher, A. P. Chaves, and M. A. Gerosa. Awareness Sup-
port in Distributed Software Development: A Systematic Review and
Mapping of the Literature. Computer Supported Cooperative Work
(CSCW), pages 1–46, 2012. 37

[169] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng. The
impact of social media on software engineering practices and tools.
In Proceedings of the FSE/SDP workshop on Future of software en-
gineering research, FoSER ’10, pages 359–364, New York, NY, USA,
2010. ACM. 2, 39

[170] A. Strauss and J. Corbin. Grounded Theory in Practice. SAGE
Publications, 1997. 4, 5, 46, 47, 108

[171] H. C. Stuart, L. Dabbish, S. Kiesler, P. Kinnaird, and R. Kang. So-
cial transparency in networked information exchange: a theoretical
framework. In Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, CSCW ’12, pages 451–460, New York,
NY, USA, 2012. ACM. 35, 47, 67, 80, 83

[172] B. Suh, E. H. Chi, A. Kittur, and B. A. Pendleton. Lifting the veil:
improving accountability and social transparency in Wikipedia with
wikidashboard. In Proceedings of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems, CHI ’08, pages
1037–1040, New York, NY, USA, 2008. ACM. 67

[173] A. Sukumaran, S. Vezich, M. McHugh, and C. Nass. Normative
influences on thoughtful online participation. In Proceedings of the

218

SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, pages 3401–3410, New York, NY, USA, 2011. ACM. 116

[174] M. Sulayman and E. Mendes. A Systematic Literature Review of
Software Process Improvement in Small and Medium Web Compa-
nies. In D. ålÍzak, T.-h. Kim, A. Kiumi, T. Jiang, J. Verner, and
S. Abrahão, editors, Advances in Software Engineering, volume 59 of
Communications in Computer and Information Science, pages 1–8.
Springer Berlin Heidelberg, 2009. 42

[175] E. Sun, I. Rosenn, C. Marlow, and T. Lento. Gesundheit! mod-
eling contagion through facebook news feed. In Proceedings of the
International AAAI Conference on Weblogs and Social Media, 2009.
103

[176] K. Sylwester and G. Roberts. Cooperators benefit through
reputation-based partner choice in economic games. Biology Letters,
6(5):659–662, 2010. 114, 122

[177] J. M. Tauer and J. M. Harackiewicz. Winning Isn’t Everything: Com-
petition, Achievement Orientation, and Intrinsic Motivation. Journal
of Experimental Social Psychology, 35(3):209–238, 1999. 124, 125

[178] J. Thom, D. R. Millen, and J. DiMicco. Removing Gamification from
an Enterprise SNS. In Proc. CSCW. ACM, 2012. 104, 123

[179] W. Tichy. The Evidence for Design Patterns. In A. Oram and G. Wil-
son, editors, Making Software: What Really Works, and Why We
Believe It, pages 393–414. O’Reilly Media, Inc., 2010. 42

[180] C. Treude and M. Storey. Awareness 2.0: Staying aware of projects,
developers and tasks using dashboards and feeds. In Proc. ICSE,
365–374. ACM, 2010. 37

[181] B. Turhan, L. Layman, M. Diep, H. Erdogmus, and F. Shull. How
E�ective Is Test-Driven Development? In A. Oram and G. Wilson,
editors, Making Software: What Really Works, and Why We Believe
It, pages 207–219. O’Reilly Media, Inc., 2010. 42

[182] M. Umarji and C. Seaman. Predicting acceptance of Software Process
Improvement. SIGSOFT Softw. Eng. Notes, 30(4):1–6, May 2005. 44

219

[183] R. Vallerand, S. Salvy, G. Mageau, A. Elliot, P. Denis, F. Grouzet,
and C. Blanchard. On the role of passion in performance. Journal of
Personality, 75(3):505–534, 2007. 82

[184] R. J. Vallerand and G. Reid. On the causal e�ects of perceived com-
petence on intrinsic motivation: A test of cognitive evaluation theory.
Journal of Sport Psychology, 6(1):94–102, 1984. 22

[185] R. van Solingen and E. Berghout. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill Publishing Company, 1999. 94, 96, 98

[186] D. VandeWalle, W. L. Cron, and J. W. Slocum Jr. The role of goal
orientation following performance feedback. Journal of Applied Psy-
chology, 86(4):629–640, Aug 2001. 130

[187] Vereinigung Cockpit e.V. Ryanair bedroht spanischen Pilotenver-
band, press release, Sep 10 2012. 124

[188] A. Vermeulen, S. Ambler, G. Bumgardner, E. Metz, T. Misfeldt,
J. Shur, and P. Thompson. The Elements of Java (TM) Style, vol-
ume 15. Cambridge University Press, 2000. 42

[189] G. M. Walton, G. L. Cohen, D. Cwir, and S. J. Spencer. Mere be-
longing: The power of social connections. Journal of Personality and
Social Psychology, 102(3):513–532, Mar 2012. 124

[190] Y. Wang, W. Gräther, and W. Prinz. Suitable notification intensity:
the dynamic awareness system. In Proceedings of the 2007 inter-
national ACM conference on Supporting group work, pages 99–106.
ACM, 2007. 34, 119, 131, 132

[191] K. Werbach and D. Hunter. For the Win: How Game Thinking Can
Revolutionize Your Business. Wharton Digital Press, 2012. 164

[192] L. Williams. Pair Programming. In A. Oram and G. Wilson, editors,
Making Software: What Really Works, and Why We Believe It, pages
311–328. O’Reilly Media, Inc., 2010. 42

[193] R. K. Wilson and J. Sell. "Liar, Liar...": Cheap Talk and Reputa-
tion in Repeated Public Goods Settings. The Journal of Conflict
Resolution, 41(5):695–717, 1997. 125

220

[194] S. S. Wiltermuth and F. Gino. "I’ll Have One of Each": How Sepa-
rating Rewards into (Meaningless) Categories Increases Motivation.
Journal of Personality and Social Psychology, (in press), 2013. 134,
135

[195] C. Wu, J. Gerlach, and C. Young. An empirical analysis of open
source software developers’ motivations and continuance intentions.
Information & Management, 44(3):253–262, 2007. 82

[196] Y. Ye and K. Kishida. Toward an understanding of the motivation
of open source software developers. In Proceedings of the 25th Inter-
national Conference on Software Engineering, pages 419–429, 2003.
84

[197] H. Zhu, R. Kraut, and A. Kittur. Organizing without formal or-
ganization: group identification, goal setting and social modeling in
directing online production. In Proceedings of the ACM 2012 con-
ference on Computer Supported Cooperative Work, CSCW ’12, pages
935–944, New York, NY, USA, 2012. ACM. 127

[198] M. Zuckerman, J. Porac, D. Lathin, and E. L. Deci. On the Im-
portance of Self-Determination for Intrinsically-Motivated Behavior.
Personality and Social Psychology Bulletin, 4(3):443–446, 1978. 22

221

	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Scope & Assumptions
	1.4 Research Methods
	1.5 Structure

	2 Diffusion of Innovations
	2.1 Elements
	2.2 The Innovation-Decision Process
	2.3 Adopter Categories
	2.4 Attributes of Innovations
	2.5 Diffusion Networks
	2.6 The Organizational Innovation Process
	2.7 Diffusion of Innovations and Software Engineering
	2.8 Summary

	3 Self-determination Theory
	3.1 Basic Psychological Needs
	3.2 Intrinsic & Extrinsic Motivation
	3.3 Motivation and Software Engineering
	3.4 Summary

	4 Computer-supported Cooperative Work
	4.1 Introduction
	4.2 Modeling Social Cues
	4.3 CSCW in Software Engineering
	4.4 Summary

	5 The Adoption of Software Engineering Practices
	5.1 Adoption Problems
	5.2 Empirical Study: Testing on GitHub
	5.3 Empirical Study: Mutual Assessment in Social Media for Developers
	5.4 Summary

	6 Supporting Practice Adoption in Software Engineering
	6.1 Definitions
	6.2 PAIP: The Practice Adoption Improvement Process
	6.3 Summary

	7 A Catalog of Adoption Patterns
	7.1 Introduction
	7.2 Knowledge Stage
	7.3 Persuasion Stage
	7.4 Motivation: Overcoming the KAP-gap
	7.5 Decision Stage
	7.6 Implementation Stage
	7.7 Supporting Adoption Patterns
	7.8 Summary

	8 Quasi-Experiment: Version Control Practices in a Student Project
	8.1 Introduction
	8.2 An Application of PAIP
	8.3 Analysis
	8.4 Threats to Validity
	8.5 Conclusions

	9 Related Work
	9.1 Adoption Research in Software Engineering
	9.2 Community Design
	9.3 Persuasive Technology
	9.4 Gamification
	9.5 Incentive Strategies in Knowledge Management
	9.6 Theory W
	9.7 Summary

	10 Conclusions & Outlook
	10.1 Limitations
	10.2 Outlook
	10.3 Contributions

	A Testing on GitHub — Coding System
	A.1 Category: Interaction
	A.2 Category: Motivation
	A.3 Category: Problems
	A.4 Category: Coping
	A.5 Category: Impact

	B Mutual Assessment — Coding System
	B.1 Category: Interaction
	B.2 Category: Motivation
	B.3 Category: Problems
	B.4 Category: Impact

	Curriculum Vitae
	Bibliography

