
It Was a Bit of a Race: Gamification of Version Control

Leif Singer, Kurt Schneider
Software Engineering Group
Leibniz Universität Hannover

Hannover, Germany
{leif.singer, kurt.schneider}@inf.uni-hannover.de

Abstract—The adoption of software engineering practices
cannot always be achieved by education or processes. However,
social software has the potential for supporting deliberate
behavior change. We present preliminary results of an
experiment in which we encouraged computer science students
to make more frequent commits to version control by using a
social software application. We provided a web-based
newsfeed of commits that also displayed a leaderboard. While
we have yet to analyze the data, interviews we conducted with
the participants allow for first qualitative insights.

Version control; commits; behavior change; gamification

I. INTRODUCTION
Because of deficits in motivation [1] or expertise,

developers don’t always strictly follow processes and
software engineering best practices. We believe using social
software can mitigate this problem by addressing the
intrinsic motivations of developers. In this paper, we use
version control as an example of a software engineering
method for which we want to improve the adoption of best
practices. More specifically, we are concerned with the
frequency of commits to repositories.

To make changes to a software product easily reversible
or to select them for releases, it is helpful to make commits
that are thematically cohesive and isolated from other
changes. Committing frequently can be a prerequisite for
this. Figure 1 shows a commit to a repository hosted on the
GitHub social coding website. As he did not commit
frequently enough, the author is unable to tell which changes
the commit contains.

Figure 1. A commit on GitHub1

While there are situations in which other commit
strategies might be preferable, our current work concentrates
on this strategy and having it adopted by developers. We
often find this in student projects: students put several
different features and fixes into a single commit. We believe
the reason to be a combination of missing knowledge

1 Source: https://github.com/steveodom/beta-signup/commits/master/views,
accessed Feb 9th, 2012

regarding best practices and the effort needed for thoughtful
commits.

Social software allows people to connect and interact
with each other and to stay aware of what their contacts are
doing. This has been successfully used in software
engineering already, as Treude and Storey [12] as well as
Begel and Zimmermann [2] have documented, for example.
They show that newsfeeds can be used to increase the
awareness of project participants.

However, social software can also be used to motivate
users and to influence their behavior. Centola showed that
social reinforcement can make behavior spread in an online
social network [3]. Foster et al. used a custom Facebook
application and step counters to show that social software
can even motivate people to walk more [6].

These mechanisms are related to gamification, which,
according to Deterding et al. [5], is “the use of game design
elements in non-game contexts.” Gamification can be used to
motivate people regarding certain tasks. For example, Thom
et al. discuss a company-internal social network site, in
which users were awarded points and ranks for contributing
[11]. Removing these game mechanics resulted in a drop of
contributions. Landers and Callan used similar mechanisms
for encouraging students to take non-mandatory quizzes [7].

We want to use these mechanisms in a systematic
manner to improve the adoption of software engineering
practices among developers [10]. This strategy would
complement – not replace – existing approaches from
developer education and software processes. In this paper,
we describe how we used our approach to encourage
computer science students to make commits to version
control more frequently. We use the number of commits of a
developer as a very crude metric for commit quality.

II. EXPERIMENT SETUP
Each fall semester, our research group organizes the

software project course, a mandatory course for computer
science undergraduates. The course has about 35 to 60
participants each semester, most of them in their fifth
semester. The students form teams of four to six and elect a
project leader and a quality agent. The project starts at the
beginning of October and lasts until the end of January. In
the term we ran our experiment, we had 37 students.

The members of our group act as customers: we propose
software that we would like to have developed and have the
students elicit requirements from us. In the second phase, the
teams can choose between preparing an architecture or

Leif Singer
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

creating exploratory prototypes. They implement the actual
applications in the third and final phase. During the project, a
member of our group will act as coach, answering questions
about technical subjects and the development process. To
create time pressure, each team receives six vouchers for
customer appointments of 15 minutes each and six vouchers
for coach appointments of 30 minutes each.

At the end of the project, the customer executes the
acceptance tests defined in the previously created
requirements specification and decides whether reworking is
needed. At this point, our role-play ends.

Finally, we conduct an LID session with each team. LID
– short for Light-weight Documentation of Experiences – is a
technique for the elicitation of project experiences [9]. A
typical LID session for the course takes about two hours
during which the team members and a moderator jointly fill
in a template for experience elicitation. It inquires students
about impressions, feelings, conflicts, and advice, and makes
them review the whole project from beginning to end. In the
sessions, we emphasize that the passing of the course will
not be affected anymore and encourage them to honestly
describe the negative experiences as well.

For each team, we provide a Subversion repository, a
Trac instance for issue tracking, and a web-based quality
gate system that is used to progress the teams through the
project phases. The Trac instance is linked to the team’s
repository, so students are able to see their team’s commits
using either Trac or any subversion client. In the fall 2011
course, we added another tool: a web-based newsfeed of
each team’s commits, featuring a leaderboard that shows the
commit count for each team member. The next section
introduces Teamfeed, a web-based newsfeed of commits.

III. A NEWSFEED OF COMMITS TO VERSION CONTROL
The Teamfeed web application periodically reads the

commits to each team’s repository and saves them to a
database. They are then displayed in a newsfeed for each
team. Every student in the project could log in to Teamfeed
using their Subversion account and was then presented with
their respective team’s newsfeed. The newsfeeds of other
teams were not accessible to the students. Figure 2 shows an
anonymized screenshot of the application in which the
names of students and their team have been altered. Several
other texts have been translated into English.

Students could comment on posts in the newsfeed.
Comments on a student’s own commit or on a discussion in
which the student was already participating resulted in an
email notification being sent to the student. If a student had
uploaded an image for use as their avatar, it was displayed
next to their commits; otherwise a default image was used.

Additional posts to the newsfeed were generated when
predefined thresholds regarding the number of commits by a
user or a team were exceeded. We called these posts
milestones in Teamfeed. We defined thresholds of 1, 10, 25,
50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 4000,
5000, 7500, and 10000 commits. These generated posts such
as “Congratulations! Jane Doe has reached her 200th
commit!” or “Wonderful! Your team has just reached the
1000th commit!” We based the thresholds on previous

semesters’ commit counts and added a buffer. Similar to
comments, reaching a milestone also triggered an email
notification to be sent to either the student or the whole team.

Figure 2. A screenshot of Teamfeed’s newsfeed and leaderboard.

On the right, a leaderboard lists the team members and
the counts of their respective commits so far. For higher
ranks, name and commit count were displayed larger.

Each Sunday at around 3pm, Teamfeed sent out a weekly
digest to each student such as the one depicted in Fig. 3. The
digest summarized how many commits the individual student
had made in the past week, but also provided this
information about their teammates. It also mentioned
milestones that were reached during the week and showed
the current state of the leaderboard.

Figure 3. A weekly digest as sent by Teamfeed.

A. Rationales
We now present the rationales for implementing the

aforementioned elements in Teamfeed.
Newsfeed: Newsfeeds can be used to improve the

awareness of project members. See, for example, Treude’s

Hello Edgar Eggplant!

In this weekly digest, we report what you and your team
achieved in the past seven days.

You made 18 commits this weeks.

Your teammates achieved the following:
* Adam Apple made 36 commits this week.
* Dennis Durian made 10 commits this week.
* Carla Chestnut made 32 commits this week.
* Bill Banana made 21 commits this week and, in doing so,
reached a milestone: the 250th commit.

In total, your team made 117 commits this week. This
allowed you to reach a milestone: your 1000th commit.
Excellent!

This is the current status of your team:
 1. Adam Apple (387)
 2. Bill Banana (286)
 3. Carla Chestnut (228)
 4. Dennis Durian (193)
 5. Edgar Eggplant (11)

Best wishes for next week!

and Storey’s [12] or Begel’s and Zimmermann’s work [2].
Also, they can help spreading the displayed behavior [3].

Commenting: Foster et al. conducted an experiment that
indicates a positive influence of discussion on the adoption
of behavior [6].

Notifications: Notifications about interesting and positive
events are an integral part of social software. For example,
Facebook and Twitter send out emails to users when others
want to connect or already connected with the user, or when
others react to the user’s content. In our view, these
notifications encourage users to use the application more and
to get into contact with others.

Milestones: Psychology research in goal setting and task
motivation found that defining specific goals has several
benefits [8]. Defined goals direct attention to goal-relevant
tasks, in our case committing to version control. By
generating milestones, we implicitly set those goals. After a
few commits, participants realized that the next milestone
would be further off – we deliberately increased the spacing
between successive milestones. As high goals were found to
lead to increased effort compared to lower goals, this spacing
should have been effective in increasing the effort spent on
creating commits. Complex goals may have the adverse
effect, though: they can lead to performance anxiety and
pressure. In line with these results, we created some early
milestones that were easy to reach and accustomed the
students with committing to version control. The effects that
can be achieved may differ wildly between different settings,
however, cannot be guaranteed, and need to be implemented
with care.

Leaderboard: Thom et al. showed that awarding points
and ranks for contributions was effective in motivating users
to contribute content to a company-internal social network
site [11]. Again, these approaches must be viewed critically
– some individuals might prefer earning points over the task
itself; others could reject the competitive situation and
become demotivated.

Weekly digest: Social websites such as Quora and
LinkedIn periodically send out digest emails. These
document what content was contributed by the user’s
contacts. This inspired us to create the weekly digest, as we
believe that this is another mechanism that reminds and
encourages users to use the application again.

IV. PRELIMINARY RESULTS
In the LID sessions of the 2011 fall course, we asked the

students about the web-based newsfeed of version control
commits. This section presents the results from these
questions. They give interesting insights into the way the
students perceived Teamfeed and their own commit
behavior. As the LID technique by design is not overly
precise, we cannot present any exact numbers regarding the
students’ statements. Rough trends are visible, however.

A. Negative statements
Some of the participants were unable to tell what

Teamfeed was, even though they had regularly received the
weekly digest emails and notifications of reached milestones.
As the Trac issue tracker was also connected to the

Subversion repository, these students used Trac instead of
Teamfeed.

Many students perceived the emails as spam. The emails
congratulating them on reaching milestones were mostly
sneered at.

The metric we used – the number of commits by a person
– was often said to be too simplistic and useless. Just because
someone had submitted something to version control, they
said, did not mean that there was actually any value in the
commit. One of the students was unable to access the
internet on weekends and thus was unable to commit to the
centralized subversion repository. On Mondays, the student
would commit all changes from the weekend in a single
commit.

Finally, some of the students criticized that the files
affected by a commit were not visible from the application.
Also, long commit messages were cut off at 140 characters,
which was mentioned as a nuisance by several students.

B. Positive statements
Many students mentioned that the application was useful

for getting an overview of their project. A few even
mentioned that they explicitly looked at the application to
find out whether a commit they were waiting for from
another student had already occurred. Repeatedly, the
relative simplicity compared to Trac was mentioned as an
advantage, for example when accessing it on the go using a
smartphone.

Similar things were said about the weekly digest: “It
gave a quick overview. And it was sent often enough, but not
too often.” Additionally, the members of one team explicitly
mentioned motivation: “It motivates you because you see
things moving forward. You see progress.”

Several students also saw the limitations of our simplistic
metric, but at the same time mentioned that it helped them
anyway. They mentioned positively that the leaderboard and,
partly also the newsfeed, allowed them to see whether
someone was not participating all that much. Related to that,
they said they did not want to be last on the leaderboard and
admitted a certain motivational effect.

During the LID sessions, some students told us about
sarcastic remarks they made to each other during the project,
such as “come on, you’re just fixing that bug to gain a
commit!” We believe this shows that even though the
leaderboard was not taken very seriously, it indeed was on
the minds of the students.

When a student criticized the competitive nature of the
leaderboard and, pointing at two teammates, mentioned that
“it was a bit of a race between the both of you”, one of the
students he was talking about chimed in, saying, “… which I
won!” This might indicate that while the competitive
situation was not comfortable, it may have been effective
anyway.

One student was especially critical of the whole
endeavor and said the application had encouraged him to
make superfluous commits – which he considered a bad
thing. When we followed up on that, he told us, “I
committed things earlier rather than later. It felt like I tried
to game the system. I mean, the commits did contain actual

changes, but … when I was at 90 commits I preferred to
make several smaller commits to reach the milestone I
expected at 100. Actually, I’m not sure if that’s a bad or a
good thing, to keep the commits so small. It made me
commit small fixes immediately instead of committing
everything at once after an hour of programming.”

The behavior we see in the last quote was exactly what
we were hoping for. Even though the student had thought
that large commits were preferable, our application
motivated him to make more and smaller commits.

V. CONCLUSIONS & OUTLOOK
We presented an approach to using mechanisms of social

software to gamify version control. After 37 students used
our application in a semester-long cooperative development
project, we used the LID technique to interview them about
their experiences. We found a balance of positive and
negative comments. While the weekly emails might have
annoyed some of the students, they nevertheless kept many
students aware of what their teammates were doing. In a few
instances, we found that we were able to evoke the exact
responses we had been hoping for: students making more
and smaller commits. Even though such approaches can
backfire, we believe it is important to research these
mechanisms further.

Depending on the software development process
employed, the culture, and the goals of the developerment
organization, there are other valid strategies for version
control. For example, one organization might want to
improve the relationship of commits to work items from an
issue tracking system and design a game system around that
goal. In other organizations, it might be more important to
assess the actual quality of commit messages, which might
be achieved by having developers anonymously rate their
peers messages and base a point system on these ratings. The
Continuous Integration Game plugin for the Jenkins
continuous integration tool awards points based on commits
that keep the repository in a compilable state or for adding
unit tests. Using additional rules, it can even be configured to
award points based on reports from tools such as FindBugs
and Checkstyle2.

While obviously several point-based systems are
imaginable – some even with a social rating component – we
believe they should only be used for comparably routine
tasks, such as committing more often. On creative tasks,
however, extrinsic rewards such as points can even have a
detrimental effect [4]. They should be supported by a system
that clears the way for the more intrinsic motivations of
developers, which we will discuss in future work.

Our next step will be to analyze the commit data and
compare it with the previous years of software projects.
Since the process and the kinds of projects are very similar
each year, we believe we might be able to extract proof as to
whether our approach was really effective.

2 Source: https://wiki.jenkins-ci.org/display/JENKINS/The+Continuous+
Integration+Game+plugin, accessed Mar 27th, 2012

This work is part of our efforts to create a method for
systematically applying mechanisms of behavior change to
software engineering [10]. Our aim is to improve the
adoption of best practices by software developers. While
processes and education play an important role in this regard,
we believe our approach can be a valuable addition to the
options software development companies have at their
disposal.

ACKNOWLEDGMENT
We thank Christoph Treude, Sebastian Meyer, and Kai

Stapel for their helpful comments on a draft of this paper.
We’re grateful to our reviewers for their insightful additions.

REFERENCES
[1] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp.

Motivation in Software Engineering: A systematic literature review.
Information and Software Technology, 50(9-10):860–878, 2008.

[2] Andrew Begel and Thomas Zimmermann. Keeping Up With Your
Friends: Function Foo, Library Bar.DLL, and Work Item 24. In
Web2SE: First Workshop on Web 2.0 for Software Engineering (co-
located with ICSE 2010), 2010.

[3] D. Centola. The spread of behavior in an online social network
experiment. Science, 329(5996):1194, 2010.

[4] E.L. Deci and R.M. Ryan. Handbook of self-determination research.
The University of Rochester Press, 2002.

[5] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke.
From Game Design Elements to Gamefulness: Defining
"Gamification". In Proceedings of MindTrek’11. ACM, 2011.

[6] D. Foster, C. Linehan, B. Kirman, S. Lawson, and G. James.
Motivating physical activity at work: using persuasive social media
for competitive step counting. In Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future
Media Environments, pages 111–116. ACM, 2010.

[7] R.N. Landers and R.C. Callan. Casual Social Games as Serious
Games: The Psychology of Gamification in Undergraduate Education
and Employee Training. Serious Games and Edutainment
Applications, pages 399–423, 2011.

[8] Edwin A. Locke and Gary P. Latham. Building a practically useful
theory of goal setting and task motivation: A 35-year odyssey.
American Psychologist, 57(9):705, 2002.

[9] Kurt Schneider. LIDs: A Light-Weight Approach to Experience
Elicitation and Reuse. In Frank Bomarius and Markku Oivo, editors,
Product Focused Software Process Improvement, volume 1840/2000
of Lecture Notes in Computer Science, pages 407–424. Springer
Berlin / Heidelberg, 2000.

[10] Leif Singer and Kurt Schneider. Influencing the Adoption of Software
Engineering Methods using Social Software. In 34th International
Conference on Software Engineering (ICSE), NIER Track (in press),
2012.

[11] Jennifer Thom, David R. Millen, and Joan DiMicco. Removing
Gamification from an Enterprise SNS. In Proceedings of the 2012
ACM Conference on Computer Supported Cooperative Work. ACM,
2012.

[12] C. Treude and M.A. Storey. Awareness 2.0: Staying aware of
projects, developers and tasks using dashboards and feeds. In
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, 365–374. ACM, 2010.

