
Gottfried Wilhelm
Leibniz Universität Hannover

Fakultät für Elektrotechnik und Informatik
Institut für Praktische Informatik
Fachgebiet Software Engineering

Model-Driven Development of Service
Compositions

Masterarbeit

im Studiengang Informatik

von

Leif Singer

Prüfer: Prof. Dr. Kurt Schneider
Zweitprüfer: Prof. Dr.-Ing. Christian Grimm
Betreuer: Dipl.-Wirt.-Inform. Daniel Lübke

Hannover, 21. Dezember 2007

Zusammenfassung

Die Business Process Execution Language (BPEL) zielt darauf ab, bei der Orch-
strierung von Web Services zu ausführbaren Geschäftsprozessen einen hohen Ab-
straktionsgrad zu bieten. Obwohl dies teilweise erreicht wurde, sind für die Erstel-
lung von BPEL Prozessen noch einige Aufgaben notwendig, die die mühsame Im-
plementierung von technischen Details erfordern, ohne dabei größeren Nutzen für
den eigentlichen Geschäftsprozess zu erschliessen. Auch die Unterstützung durch
Werkzeuge kann Benutzer bisher noch nicht befriedigend von diesen Problemen ab-
schirmen. Anstatt lediglich den beabsichtigten Prozess zu modellieren, müssen En-
twickler regelmäßig Aufgaben auf niedrigem Abstraktionsniveau bearbeiten, wie bspw.
umständliches Kopieren zwischen Variablen oder die manuelle Übersetzung zwischen
verschiedenen Datenmodellen. Abgesehen von diesen BPEL-spezifischen Problemen
werden Prozessmodellierer durch die sich wiederholende Entwicklung von Standard-
Web Services behindert, die heutzutage eigentlich eine Selbstverständlichkeit sein
sollten — bspw. die Speicherung und Abfrage von Geschäftsobjekten.

Um diese Probleme zu adressieren, schlägt diese Arbeit eine Notation zur Model-
lierung von Prozessen, ein Modellierungswerkzeug, sowie einen Generator vor, der
schlussendlich eine BPEL-Orchestrierung und Standard-Web Services aus einem im
Modellierungswerkzeug erstellten Prozessmodell generiert. Es ist das Ziel, die Or-
chestrierung von Prozessen stärker auf die Verwendung von domänen-nahen Abstrak-
tionen auszurichten.

ii

Abstract

The Business Process Execution Language (BPEL) aims at enabling the usage of high
abstraction levels when orchestrating Web Services to represent business processes.
While this has partly been achieved, several tasks required for the creation of a BPEL
process demand cumbersome implementation of technical details, adding little value
for the actual business process. Real-world tool-support still fails to shield users from
these deficiencies. Instead of just modeling the intended process, developers regularly
need to perform low-level tasks such as creating and copying variables or translating
between different data models. Apart from these BPEL-specific burdens, process mod-
elers get distracted by the repetitive creation of standard Web Services that should be
a commodity today — e.g. the persistence and the retrieval of business objects.

To address these problems, this thesis proposes a modeling notation, an accompany-
ing modeling tool and a generator, ultimately producing a BPEL orchestration and Web
Services generated from a process model that was created using the modeling tool.
It tries to move the act of orchestration more in line with the goal of using high-level
abstractions in proximity to the respective domain.

iii

List of Acronyms

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

GUI Graphical User Interface

HTTP Hypertext Transport Protocol

IEEE The Institute of Electrical and Electronics Engineers

MDA Model-Driven Architecture, trademark of the OMG

MDSD Model-Driven Software Development

MOF Meta Object Facility

OASIS Organization for the Advancement of Structured Information Standards

OCL Object Constraint Language

OMG Object Management Group

QVT Query / View / Transformation

RMI Remote Method Invocation (Java API)

SOA Service-oriented Architecture

SOAP Formerly: Simple Object Access Protocol; since 2003: SOAP

UML Unified Modeling Language

W3C World Wide Web Consortium

WSDL Web Services Description Language

WSFL Web Services Flow Language

XML Extensible Markup Language

XSD XML Schema Definition

iv

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Description . 2
1.3. Structure of this Thesis . 3

2. Basic Concepts 4
2.1. Service-oriented Architecture . 4
2.2. Web Services . 5

2.2.1. Web Services Description Language 5
2.2.2. XML Schema . 9

2.3. Service Compositions . 11
2.3.1. Business Process Execution Language 11

2.4. Model-Driven Development . 16
2.4.1. Terminology . 16
2.4.2. UML Profiles . 19
2.4.3. Consequences . 20

3. Approach 22
3.1. Intended Workflow . 22
3.2. Scenario . 25

3.2.1. Process Modeling . 26
3.2.2. Process Configuration . 27
3.2.3. Generation and Deployment . 29

3.3. Graphical User Interface . 29
3.4. Generator Requirements . 32
3.5. Commodity Services . 33
3.6. Summary . 33

4. The Composr UML Profile 35
4.1. Metamodel . 35

4.1.1. Foundation . 35
4.1.2. Basic Activities . 38
4.1.3. Services . 39
4.1.4. Structured Activities . 40
4.1.5. Data . 41

4.2. Notation . 42
4.2.1. Initial Draft . 42
4.2.2. Survey . 45
4.2.3. Results of the Survey . 46

v

Contents

4.2.4. Final Version . 46

5. Development 50
5.1. Development Process . 50
5.2. Generator Design . 51

5.2.1. Technology . 51
5.2.2. Artifact Dependencies . 53
5.2.3. Integration with the GUI . 55
5.2.4. Architecture of the Generator . 56

5.3. Generator Workflow and Artifacts . 57
5.3.1. XML Schema . 57
5.3.2. Web Services Description Language 59
5.3.3. Commodity Services . 61
5.3.4. Business Process Execution Language 63

5.4. Graphical User Interface . 64
5.4.1. Sketches . 65
5.4.2. Implementation . 67

6. A real-world Example 68
6.1. The Thesis Process . 68

6.1.1. Student Implementation . 69
6.1.2. Composr Model . 70

6.2. Metrics . 72
6.3. Comparison . 73

7. Related Work 77
7.1. Model-Driven Development of executable Processes 77
7.2. Available Products . 79

8. Conclusions and Outlook 82
8.1. Critical Appraisal . 82
8.2. Outlook . 84

8.2.1. Graphical Editor and Generator 84
8.2.2. Commodity Services . 85

8.3. Conclusions . 86

Bibliography 88

A. Survey 91

B. Final Notation 96

C. Generated Artifacts 97

D. Compact Disc 102

vi

1. Introduction

1.1. Motivation

Service-oriented Architecture (SOA) is an architectural style for supporting business
processes in computer systems. Instead of using a single, monolithic system or ap-
plication, business processes are being modelled in an executable language. The re-
sulting executable business processes then use services to carry out the actual tasks.
Services are self-contained units of functionality with a defined, platform-neutral inter-
face. The concept of services is not tied to any communications channel, i.e., services
can e.g. be provided over the network using various protocols or run directly on the
machine executing the process.

Building upon these prerequisites, SOA permits the development of very flexible sys-
tems, as service implementations and locations can be modified without affecting the
business process. Also, the functionality exposed through services is available to exist-
ing and new business processes alike, even allowing for the implementation of cross-
organizational processes.

In more concrete terms, the business processes are often being modelled using the
Business Process Execution Language (BPEL), while services are predominantly im-
plemented as Web Services. Both approaches are based on standards and have thus
been embraced by the industry.

Despite the popularity of BPEL for modelling executable business processes, it has
often been criticized for certain short-comings.

Being a mélange of two prior languages — WSFL and XLANG, respectively —, it
supports different styles of workflow modelling. BPEL inherits its graph-oriented con-
structs from WSFL, while the block-oriented control-structures stem from XLANG.
Even though some may see this combination as a flexibility gain, the consensus is
that it adds unnecessary complexity.

BPEL, which is a rather verbose XML language requiring many small steps, is consid-
ered cumbersome to write by hand. Thus, many tools exist to support the graphical
modelling of BPEL processes. But most of these merely support the graphical ar-
rangement of the exact same constructs found in the plain source, which does not
make the modelling process significantly easier. As an accurate knowledge of the
available BPEL constructs is therefore still required for both reading and creating such
models. Most tools are not adequate for use by novice users or non-technical domain
experts, rendering the tools useless for tasks like requirements elicitation.

On the service side, similar improvements in comfort seem desirable. There are sev-

1

1. Introduction

eral standard tasks that appear in almost every SOA project and are basically the same
every time – persistence being one example. Nevertheless, developers are forced to
manually implement these services again and again, resulting in an avoidable produc-
tivity loss.

While tool-support should be able to shield users from many of these problems, ap-
propriate solutions have yet to surface — modeling a BPEL process still requires the
modeler to constantly switch between high- and low-level tasks.

1.2. Problem Description

This thesis proposes a model-driven approach to improve the situation in SOA devel-
opment, addressing the aforementioned problems. The pursued approach will provide
a metamodel capable of capturing all aspects of a business process relevant to the
generation of executable business processes from model instances. Furthermore, a
graphical modelling tool will be provided, allowing the creation of such models. Ulti-
mately, a generator will be developed, taking the created model instance as its input
and delivering the artifacts of an executable business process as its output. The fol-
lowing paragraphs add some detail to these requirements.

As a formal basis, a UML profile is developed that will provide a metamodel for the
modelling of business processes. The metamodel will define appropriate properties
for all elements so a model instance will provide sufficient information for the gener-
ation of BPEL processes and standard services from a given model. To permit the
development of a graphical modeling tool with this theoretical foundation, a notation
for the elements defined in the metamodel must be evaluated and defined.

A graphical modelling tool will be developed, enabling its user to create instances of
the aforementioned metamodel. To reduce the complexity found in current tools, the
tool will only support the most common tasks directly. To enable the translation of the
modeled process into an executable process, the tool will facilitate the generation of all
artifacts required to successfully execute the modelled process in a BPEL engine. The
user will have access to all generated source code, allowing for subsequent editing in
more powerful tools.

To be appropriate for usage in requirements elicitation, the tool requires an unobtrusive
user interface that does not hinder the process of business process modelling. Also,
the notation used should be intuitively comprehensible by both modellers as well as
non-technical domain experts. On the other hand, the tool should be suitable for tech-
nical users, wishing to create actual executable business processes, perhaps building
upon a model created earlier during the elicitation phase.

The modeling tool will use a generator to create the aforementioned artifacts.

This includes deployment-ready packages for both the BPEL process as well as all
generated standard services. Also, the source code for all generated artifacts will be
available, supported by custom build scripts. This will allow for further development of

2

1. Introduction

the generated process, should the tool developed in this thesis not suffice at a later
stage of process development.

To narrow the scope of this thesis, the generated artifacts may be oriented at spe-
cific implementations of a BPEL engine and Web Service engines. Nevertheless, the
generator’s design should allow for the modular replacement of generation strategies
or parts thereof, thus enabling the support of different BPEL engines, different Web
Service engines, and even service orchestration languages other than BPEL.

1.3. Structure of this Thesis

The motivation for this thesis and the central problems have now been outlined. Chap-
ter 2 details several basic concepts required to understand the problem domain: Web
Services and related technologies, service compositions, and model-driven develop-
ment.

Chapter 3 gives a high-level view of the approach followed to solve the aforementioned
problems and difficulties. In a scenario, the envisioned workflow is outlined.

To formally model business processes, a metamodel for all model instances is re-
quired. This is described in chapter 4. Also, a graphical notation for the metamodel is
developed and verified in a survey among students.

Chapter 5 explains the details of the development of both the editor and the gener-
ator. This includes the requirements for both components as well as their designs.
Some user interface concepts are presented and, for the generator, some of the used
algorithms are outlined.

To provide a means for comparison of different approaches to process modeling, chap-
ter 6 examines an example process taken from a student project. This process is mod-
elled using the developed tool. The section compares both process models and the
tools used to create them. For this, some metrics are defined and the their values are
discussed.

Related work found relevant during research for this thesis is being presented and put
into context in chapter 7. Also, an overview of existing commercial products related to
the developed tool is given.

After taking a critical look at the contributions of this thesis, chapter 8 outlines possible
future work that could be based on the thesis. The thesis closes with conclusion.

3

2. Basic Concepts

This chapter introduces several concepts integral to understanding the problem do-
main of this thesis. The first section is about service-oriented architecture and gives
an overview of the approach, while the following section presents Web Services, the
most commonly used service implementation in SOAs, presenting core concepts from
the Web Services Description Language and XML Schema. Section 2.3 explains the
concept of service compositions and introduces BPEL, the Business Process Execu-
tion Language. The last section closes this chapter with an overview of model-driven
development.

2.1. Service-oriented Architecture

Service-oriented architecture (SOA) is an architectural style for the design of business
applications, focussing on the business processes present in an organization. As these
processes may cross organizational boundaries, one of the goals of SOA is the use
of platform-neutral, self-contained services. Also, SOA takes into consideration that
today, much business value is created from business models instead of mere prod-
ucts. Therefore, SOA aims at providing an IT infrastructure that can quickly adapt to
changing markets — by recreating the actual business processes in the IT in the form
of compositions of services.

At the core of SOA lies the concept of a service. Building on the definition by Lübke [1],
this thesis defines a service as follows.

Definition 2.1.1
A service is a loosely-coupled software component that is accessible over a network
and provides one or more capabilities to its consumers. It implements a well-defined
interface and can be called using standardized protocols without knowledge of the
service’s actual implementation.

An SOA uses services as the building blocks of executable processes, which are in
turn modeled according to existing business processes.

Definition 2.1.2
A business process is a procedure in an organization involving multiple activities, car-
ried out by possibly multiple roles, where each role may be occupied by one or more
actors and an actor may occupy one or more roles. An actor may be a person or a
computer system. The order of the execution of the activities can be described using
workflow patterns as in [2].

4

2. Basic Concepts

The goal of SOA is to better align business and IT, and to do so in a very flexible man-
ner. On the technical side, this is achieved by implementing the actual business pro-
cesses as service compositions and implementing the activities as services. Service
implementations are easily exchangeable, since their are self-contained and loosely
coupled. Compositions of services can be centrally adapted to new business require-
ments without the need for an organization-wide rollout of new software. Therefore,
the implemented business processes can very quickly respond to change in business
models.

On the business side, this forces organizations to clearly define their business pro-
cesses — possibly for the first time. Also, there is less need to worry about whether the
IT infrastructure can respond to change as easily as desired, giving business planners
more freedom in exploring possible strategies to create business value. The intended
effect is an optimization of business processes in terms of time and resources.

2.2. Web Services

Although services can be realized in several ways — RMI, CORBA and DCOM, amongst
others —, the currently most promising standard in use is Web Services. HTTP and
SOAP, which are the most commonly used transport and communications protocols
for Web Services at this time, will be assumed to be known by the reader.

This section will examine the core technologies behind Web Services, namely the Web
Services Description Language (WSDL) and XML Schema. The former is used as a
platform-neutral way to define the interfaces of Web Services, while the latter is the
predominant language used to describe the data types required for communication
with a Web Service.

2.2.1. Web Services Description Language

WSDL, the Web Services Description Language, is an XML language used for the
definition of the interface a Web Service exposes — i.e., its operations, their argu-
ments and return values, as well as the protocols and endpoints required to access
the service. As of this writing, the current version of WSDL is 2.0, superseding WSDL
1.1.

The approach presented in this thesis includes generating both WSDL and BPEL arti-
facts. As the current version of the Business Process Execution Language, WS-BPEL
2.0, does not support WSDL 2.0, this thesis will focus on WSDL 1.1 entirely.

Inside its <definitions> root element, a WSDL description contains the following
subelements.

• One <types> element, defining the data types used in the service interface.
Most of the time, this is done using XML Schema, although other languages are
possible.

5

2. Basic Concepts

• Zero or more <message> elements, defining the input and output signatures of
the exposed interface.

• Zero or more <portType> elements, defining the actual operations using the
defined messages and bundling them into so-called ports.

• Zero or more <binding> elements, associating concrete protocols with the port
types. Common protocols include SOAP for message encoding and HTTP for
transport.

• Zero or more <service> elements, publishing the bindings at concrete endpoint
URLs.

Figure 2.1 illustrates this structure by dividing it into an abstract section and a concrete
section. The abstract service interface consists of the operations, which use messages
for their input and output. Each message references one or more types defined in
the types element. The concrete service interface is a collection of endpoints, each
referencing a binding that specifies a concrete protocol. The bindings employ the
abstract service interface by referencing the port types that consist of the operations.

Types (e.g. XML Schema)

Message BMessage A Message DMessage C

Operation 1 Operation 2

Abstract Service Interface

Binding A Binding B

Endpoint 1

Concrete Service Interface

Endpoint 2

Ab
st

ra
ct

 S
ec

tio
n

Co
nc

re
te

 S
ec

tio
n

Figure 2.1.: The structure of a WSDL description.

Since WSDL is an extensible language, elements from other namespaces can also be

6

2. Basic Concepts

added. E.g., BPEL adds the <partnerLinkType> element, amongst others. This will
be discussed further in the section about the Business Process Execution Language
(2.3.1).

Listing 2.1 shows a simplified example for a WSDL description.

1 <?xml version="1.0" encoding="UTF-8"?>
2 < d e f i n i t i o n s >
3 <types>
4 <xs:schema>
5 < xs : impo r t schemaLocation="Person.xsd" / >
6 < xs : impo r t schemaLocation="Messages.xsd" / >
7 < / xs:schema>
8 < / types>
9 <message name="saveResponse">

10 < pa r t name="parameters" element="tns:saveResponse" / >
11 < / message>
12 <message name="saveRequest">
13 < pa r t name="parameters" element="save" / >
14 < / message>
15 <portType name="PPSPortType">
16 <opera t ion name="save">
17 < inpu t message="saveRequest" / >
18 <output message="saveResponse" / >
19 < / opera t ion>
20 < / portType>
21 <b ind ing name="PPSBinding" type="PPSPortType">
22 <soap:b ind ing s t y l e ="document" / >
23 <opera t ion name="save">
24 <soap:opera t ion soapAct ion="urn:save" s t y l e ="document" / >
25 < inpu t >
26 <soap:body use="literal" / >
27 < / i npu t >
28 <output>
29 <soap:body use="literal" / >
30 < / output>
31 < / opera t ion>
32 < / b ind ing>
33 <serv i ce name="PersonPersistenceService">
34 < po r t name="PPSPort" b ind ing="PPSBinding">
35 <soap:address l o c a t i o n ="http://example.org/PersonPersistenceService" / >
36 < / po r t >
37 < / se rv i ce >
38 < / d e f i n i t i o n s >

Listing 2.1: A simplified WSDL description of the interface of a Web Service offering to
persist person objects

The example in listing 2.1 defines a service called PersonPersistenceService at the
endpoint URL http://example.org/PersonPersistenceService (lines 33-37).
For this, it uses a SOAP binding (lines 21-32) employing HTTP as transport protocol
and using the document/literal style. Its operations are defined in the referenced port
type (lines 15-20) which specifies a single operation called save. The save operation
takes a saveRequest message (lines 12-14) as its argument and returns a saveRe-
sponse message (lines 9-11). The definitions of the elements used by the messages

7

2. Basic Concepts

are being imported in the types element. The referenced XML Schema definitions will
be explained in the next section.

The WSDL supports different styles for defining the structure of the service interface.
An outdated one is the RPC/encoded-style, which could not be validated against a
schema. By now, the most frequently used style is the document/literal-style, in which
the types of the messages have been defined in a schema and can thus be validated.
Listing 2.2 shows an example for a SOAP message sent using this style. It invokes an
operation called anOperation with two integer parameters, called aParameter and
anotherParameter, respectively.

1 <soap:envelope>
2 <soap:body>
3 <aParameter>12< / aParameter>
4 <anotherParameter>144< / anotherParameter>
5 < / soap:body>
6 < / soap:envelope>

Listing 2.2: A SOAP message with the document/literal-style defined in the WSDL.

Unfortunately, this would violate a recommendation from the WS-I Basic Profile [3], as
the body element of a SOAP message might contain multiple elements when used in
this form. Therefore, it is common practice to wrap a message’s parts in a wrapper ele-
ment, named after the operation the message belongs to. For responses, “Response”
is appended to the name of the wrapper element. Listing 2.3 shows an example for a
SOAP message sent using this style variation. It invokes the same operation as in the
previous example.

1 <soap:envelope>
2 <soap:body>
3 <AnOperation>
4 <aParameter>12< / aParameter>
5 <anotherParameter>144< / anotherParameter>
6 < / AnOperation>
7 < / soap:body>
8 < / soap:envelope>

Listing 2.3: A SOAP message with the document/literal-style defined in the WSDL
using a wrapper element.

Because of the absence of such a wrapper element, the first variation shown is referred
to as “nonwrapped” document/literal, whereas the second variation is called “wrapped”
document/literal [4].

Several Web Services engines support the automatic “unwrapping” of these wrapped
messages, resulting in source code stubs that omit the wrapper element. E.g. in Java,
the signature of the above operation would be public void anOperation(AnOperation
parameters) when not using the unwrapping option. The actual parameters would be
inside the parameters object. The unwrapped signature would be public void anOper-
ation(int aParameter, int anotherParameter), which is easier to read and use.

The “unwrapped” term must be clearly distinguished from the “nonwrapped” term. It is

8

2. Basic Concepts

impossible to unwrap a nonwrapped SOAP message, consequently unwrapping can
only be done when using the “wrapped” variation. It will be used throughout this thesis.

2.2.2. XML Schema

As has been mentioned before, WSDL commonly uses XML Schema to define the
data types used in the provided service interface. XML Schema is a W3C recommen-
dation [5] used to define the types, elements and attributes permissible in an XML
document, thus formally defining an XML language.

The root of an XML Schema definition is a <schema> element. Its most important
sub-elements are

• the <import> element, which can be used to import existing type definitions;

• the <complexType> element for the definition of new types;

• the <element> element, which defines new elements and has a type attribute
referencing a valid XML Schema type.

Inside the type and element definitions, additionally to all imported types and elements,
many types built into XML Schema 1 can be used. Employing a few more constructs
from the XML Schema recommendation, users of XML Schema can model the busi-
ness objects required in their Web Services.

To resume the WSDL example from listing 2.1, the two referenced XML Schema files
will now be presented and explained. Listing 2.4 defines the save and saveResponse
elements.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <schema xmlns="http://www.w3.org/2001/XMLSchema">
3 <xs:e lement name="save">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:e lement name="person" type="Person" / >
7 < / xs:sequence>
8 < / xs:complexType>
9 < / xs:e lement>

10 <xs:e lement name="saveResponse">
11 <xs:complexType>
12 <xs:sequence>
13 <xs:e lement name="person" type="Person" / >
14 < / xs:sequence>
15 < / xs:complexType>
16 < / xs:e lement>
17 < / schema>

Listing 2.4: The definition of the save and saveResponse elements in XML Schema

1http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/datatypes.html#built-in-datatypes

9

2. Basic Concepts

Each element is set to contain a sequence of just one element called person which is
of the type Person.

Listing 2.5 shows the simple definition of a Person data type. As should be rather
obvious, it defines a Person to have the sub-elements id, adult, age, birthday, and
name. For the elements’ types, it uses some of the simple data types already built into
XML Schema.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <schema xmlns="http://www.w3.org/2001/XMLSchema">
3 <complexType name="Person">
4 <sequence>
5 <element name="id" type="long" / >
6 <element name="adult" type="boolean" / >
7 <element name="age" type="int" / >
8 <element name="birthday" type="dateTime" / >
9 <element name="name" type="string" / >

10 < / sequence>
11 < / complexType>
12 < / schema>

Listing 2.5: The definition of a Person data type in XML Schema

XML Schema provides many more possibilities for more exact definitions of data types
— value range restrictions, substitution groups and type derivation, amongst others.
Nevertheless, the language constructs presented in this section already represent the
basis of what is needed for the definition of types used in Web Services.

To achieve compatibility with different Web Service engines and the languages Web
Services are written in, developers must often restrict themselves to only using a sub-
set of what is expressible with XML Schema. Practical interoperability between Web
Services would not be achievable otherwise.

Although maximizing interoperability and platform neutrality was the reasoning behind
choosing XML Schema as the default type system for WSDL [6] (Section 2.2: Types),
development reality has relativized the extent to which this can be achieved using XML
Schema. Following are some examples for what is possible with XML Schema, but not
so in the Java programming language:

• restricting the int type to values between two integer numbers;

• default values for primitive types;

• optional attributes;

• unsigned numbers.

Other restrictions may apply to other languages — Java is used as a mere example.

On the other hand, the char primitive type found in Java cannot be mapped to XML
Schema. Disparities like these must be taken into account when creating XML Schema
definitions to be used with Web Services.

10

2. Basic Concepts

2.3. Service Compositions

Service composition is an important idea in service-oriented architecture. It combines
invocations of existing services into a new, usually more abstract service. To regulate
the transition between the invocations, some kind of flow control is required. Depend-
ing on the language used to assemble a composition, different elements are available
— an extensive description of possible workflow patterns and their support in several
languages can be found in [2].

There are two distinct possible topologies when creating a service composition —
orchestrations / choreographies and point-to-point compositions. Orchestrations and
choreographies realize a hub and spoke or star topology on the service layer, pro-
viding central flow control. They must be distinguished from point-to-point topologies,
which linearly connect services that exert local flow control. The latter also creates a
service composition, but is not relevant to the subject of this thesis and will thus not be
discussed further. The difference between orchestrations and choreographies will be
explained in section 2.3.1.

Since a service composition can itself provide yet another service interface and thus
look like a regular service to any service consumer, cascades of compositions become
possible. These allow for the creation of sophisticated abstraction hierarchies, thereby
fostering the services’ decoupling and domain-orientation and thus critically supporting
central aims of service-oriented architecture.

2.3.1. Business Process Execution Language

BPEL, the Business Process Execution Language, is an XML language defined for the
creation of service orchestrations. A process defined in BPEL can be executed in a
service engine. The core capabilities of a BPEL process include receiving messages
from clients, invoking Web Services, sending reply messages back to clients, and
structuring the flow of all these activities. A BPEL process is a Web Service itself and
can, in turn, be invoked by other BPEL processes.

The first BPEL specification, called BPEL4WS [7], was based on the workflow lan-
guages WSFL and XLANG. As each of these supported a different approach to the
structuring of workflows, BPEL now does so, as well, combining both approaches into
one language. The current version of BPEL, WS-BPEL 2.0, was specified by OA-
SIS [8]. The name change was given to reflect the considerable amount of changes
and to align it better with existing Web Services standards. This thesis will be restricted
to WS-BPEL 2.0.

There are two concepts of composition support in BPEL: orchestration and choreog-
raphy. Orchestration has been explained in the preceding section. Choreographies
are abstract process contracts that cannot be executed, but can be used as an inter-
organizational process interface, defining the interactions between each organization’s
processes. The following analogy makes the difference very accessible: in orchestra-
tions, there is a central conductor overseeing the execution, as in an orchestra — or in

11

2. Basic Concepts

the case of BPEL, a central BPEL engine executing the process. In a choreography,
every participant knows the contract by which to behave — as in choreographies of
dancers or, in the case of BPEL, the contract defined by the abstract process. Chore-
ographies are out of the scope of this thesis and will not be pursued further.

BPEL processes use invocations of Web Services and several flow control constructs
to model business processes in an executable manner. The following paragraphs will
take a look at the most important elements present in BPEL, omitting those not neces-
sary to understand the basic concepts of BPEL.

process
extensions?

import*

partnerLinks?

messageExchanges?

variables?

correlationSets?

faultHandlers?

eventHandlers?

activity

Legend
"element" denotes the
presence of an XML element
<element>

"?" denotes the optional use of
a single element

"*" denotes the optional use of
multiple elements

"italics" denotes an expansion
to other elements

Figure 2.2.: The structure of a BPEL process.

To give a first overview, figure 2.2 presents the structure of a BPEL process. The
following list gives a short explanation for each of the elements shown in the figure.

• The extensions element serves as a place to declare possible extensions to WS-
BPEL 2.0, e.g. vendor-specific features not found in the standard, but desired by
the process and supported by the concrete process engine.

• Using import elements, the process may reference existing WSDL and XML
Schema definitions, e.g. for the declaration of Web Services invoked in the pro-
cess or messages accepted by the process.

• Using partnerLinks, a process defines the roles of itself and other Web Services
when communicating with each other. In simple terms, this answers the ques-
tions about who calls someone and who gets called by someone. BPEL adds
the <partnerLinkType> extension to WSDL to support these definitions.

• If the process definition contains a situation in which there are two possible reply
paths to a single request from a client, the messageExchanges element must
be used to disambiguate communication.

12

2. Basic Concepts

• In the variables element, the process may declare multiple variables for the stor-
age of received messages, the results of service invocations and intermediary
results.

• Since of a given process definitions multiple instances are likely to run in a pro-
cess engine, correlationSets must be used to create a mapping of client re-
quests to running process instances. In its most simple from, a correlation set
may consist of a single integer used as a primary key to clearly identify process
instances.

• faultHandlers are a means of catching faults occurred during the execution of
a process, e.g. reporting the fault to the process administrator or terminating
the process gracefully. They specify a fault they want to catch and an activity to
execute when that fault is being thrown. Optionally, there can also be a general
fault handler catching all faults.

• To receive messages and react to them parallel to the execution of the process,
eventHandlers may be used. Upon receipt of a specified message, they execute
the activity contained within them, without being subject to the regular control
flow.

The elements explained so far have not yet touched the main control flow of the pro-
cess — defining this, the place of the activity must be taken by exactly one activity as
defined in the specification for WS-BPEL 2.0. Table 2.1 presents the most important
basic activities available in BPEL and provides a description for each.

Table 2.2 shows the most important structured activities found in BPEL. Structured
activities are containers for other activities and required to model the control flow of a
BPEL process.

Listing 2.6 shows the XML for a simplified BPEL process. This process cannot be
executed by a process engine, because much detail has been omitted and some of
the expressions have been replaced with pseudo-code for improved readability. The
example is shown here to further illustrate the structure and the semantics of a BPEL
process and its elements.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <process name="OrderProcess">
3 < impor t l o c a t i o n ="OrderProcess.wsdl" / >
4 < impor t l o c a t i o n ="WarehouseService.wsdl" / >
5 < impor t l o c a t i o n ="InvoiceService.wsdl" / >
6 < impor t l o c a t i o n ="ShippingService.wsdl" / >
7 <par tne rL inks > . . . < / pa r tne rL inks >

13

2. Basic Concepts

Basic Activities in WS-BPEL 2.0
BPEL elements Description
<receive> Receive a SOAP message from a remote client as defined in the

process’s WSDL and may instantiate the process — consequently,
the first activity in a BPEL process must be either a <receive> or a
<pick> (see table 2.2) activity. Both activities block any subsequent
activities, they complete as soon as the message has been received.

<reply> Sends a SOAP message back to a remote client as defined in the
process’s WSDL.

<invoke> Invokes a Web Service whose WSDL must have been imported into
the process. It uses previously defined variables for input and output
data.

<assign> Copies a source value to a target variable. The source value may be
extracted from an existing variable using a specified query language
or may be a literal value. The exact place where to put the value in
the target variable can also be specified using the query language.
The most commonly used query language is XPath, but a different
query language is also allowed. To execute the process in a process
engine, the engine must of course support the query language.

Table 2.1.: Basic Activities in WS-BPEL 2.0

Structured Activities in WS-BPEL 2.0
BPEL elements Description
<pick> The <pick> activity allows the reception of multiple different

message types, whereas the <receive> (see 2.1) activity al-
lows for only one message type to be received.

<sequence> A container for other activities which will be executed in sequen-
tial order.

<flow> A container for other activities which will be executed in the order
given by the graph implied by <link> elements attached to the
contained activities, marking them as sources or targets of a link.
This activity enables parallel execution of activities.

<if> Provides for conditional branching between alternative activities.
<while>,
<repeatUntil>,
<forEach>

Used for repeating the contained activities, based on a termina-
tion condition. <forEach> permits the parallel execution of the
repetition and requires the usage of a counter for termination.

Table 2.2.: Structured Activities in WS-BPEL 2.0

8 < v a r i a b l e s > . . . < / v a r i a b l e s >
9 <sequence>

10 <rece ive portType="OrderProcess" crea te Ins tance="yes" opera t ion="
orderBooks" v a r i a b l e ="order" / >

11 <foreach counterName="bookCounter" p a r a l l e l ="yes">
12 <star tCounterVa lue>1< / s tar tCounterVa lue>

14

2. Basic Concepts

13 < f ina lCoun te rVa lue>sum (/ orderBooks / books) < / f ina lCoun te rVa lue>
14 <scope>
15 <sequence>
16 <assign>< !�� copy the cu r ren t book to the temporary v a r i a b l e

book ��>
17 . . .
18 < / assign>
19 <invoke portType="WarehouseService" opera t ion="allocateBook"

i n p u t V a r i a b l e ="book" / >
20 < / sequence>
21 < / scope>
22 < / foreach>
23 < i f >
24 < c o n d i t i o n >sum (/ orderBooks / books / book / @price) > ; 30< / c on d i t i on >
25 <assign>< !�� add 5 EUR to sh ipp ing & handl ing ��>
26 . . .
27 < / assign>
28 < / i f >
29 < f low>
30 < l i n k s >
31 < l i n k name="L1" / >
32 < / l i n k s >
33 <invoke portType="InvoiceService" opera t ion="sendInvoiceForOrder"

i n p u t V a r i a b l e ="orderBooks" / >
34 <invoke portType="ShippingService" opera t ion="shipOrder"

i n p u t V a r i a b l e ="orderBooks" / >
35 < / f low>
36 <assign>< !�� add a sucess message to v a r i a b l e orderBooksResponse ��>
37 . . .
38 < / assign>
39 < rep l y opera t ion="orderBooks" v a r i a b l e ="orderBooksResponse" / >
40 < / sequence>
41 < / process>

Listing 2.6: A simplified BPEL process.

Before declaring any activities, the process shown in listing 2.6 first imports its own
WSDL — so its own message types can be used — and those of the Web Services
it uses. In addition it specifies some partnerLinks to define its relationship to said
services and declares some variables used to store data in. The following paragraph
explains the activities contained in the process.

A new instance of the process will be created as soon as a message of the type
orderBooks is received. For each book contained in that message, the service called
WarehouseService will be invoked in parallel, sending it a message of the type
allocateBook with the respective book copied into the message sent. If the total
price of all the books exceeds 30 EUR, there will be no shipment costs — otherwise, 5
EUR for shipping and handling will be added to the final cost of the order. Now, the ser-
vices InvoiceService and ShippingService will be invoked in parallel. The In-
voiceService is sent a message of the type sendInvoiceForOrder, while the Ship-
pingService is sent a message of the type shipOrder. Finally, the process replies to
the initially received request using a message of the type orderBooksResponse.

There are many more elements and aspects to BPEL processes. Nevertheless, this

15

2. Basic Concepts

thesis will concentrate on the already presented core concepts, as the aim of the thesis
is not the creation of a complete tool, but the development, exploration and evaluation
of a model-driven approach to service composition, involving the generation of BPEL
processes from a given model.

2.4. Model-Driven Development

In conventional software development, models — Class Diagrams, Entity Relationship
Models, Activity Diagrams, etc. — are part of the documentation. They are created
during the requirements and design phases and serve as structured views upon the
product to be developed. This is what is commonly referred to as model-based devel-
opment.

Model-driven development, however, assigns a new role to models. They are not only
a documentation artifact, but rather constitute parts of the implementation — or some-
times even all of it. Using suitable transformations, all kinds of artifacts, among them
program source code, are being generated from the models. This section explains the
terminology and the theoretical basics of model-driven development and provides an
overview of the consequences of this methodology.

2.4.1. Terminology

The basis of model-driven development is the definition of a domain-specific language
(DSL), matching transformations and a supporting platform, enabling the conversion
of the model of an application that is to be developed into an actual application. This
approach is depicted in figure 2.3.

Model-driven development starts with a reference implementation — an already func-
tional application that has the characteristics desired in the final, generated applica-
tion. This not only includes the use of certain selected technologies, but also requires
the architecture and other quality aspects to already be determined and implemented.
Since model-driven development is primarily targeted at the generation of several ap-
plications sharing some fundamental characteristics, this is no hindrance, as the initial
effort will pay off later, when application variants can be generated based on changes
in the model. The set of these application variants is referred to as an application
family.

The reference implementation, once available, needs to be analyzed to determine
which parts of it fall into which of the following categories.

• Schematic, repetitive code that can later be generated from model properties.

• Generic code that will be the same in every application variant based on the
reference implementation.

16

2. Basic Concepts

Reference
Implementation

Individual
CodeSchematic,

repetitive
Code Generic

Code

Application
Model DSL

Transformations

Individual
Code

Platform

Schematic,
repetitive

Code

Schematic,
repetitive

Code

Schematic,
repetitive

Code

Individual
Code

Individual
Code

Application
Model

Application
Model

analyse
separate

Legend

uses creates

Figure 2.3.: The basic idea of model-driven development, according to [9].

• Individual code that will need to be programmed manually for each of the appli-
cation variants.

A DSL needs to be chosen, if not newly created, to permit the modeling of the reference
application in high-level terms. Transformations that understand the semantics of the
DSL can then be created to process the application model, eventually converting it
into the parts of the reference implementation that were found to be schematic and /
or repetitive.

The final application will consist of this generated code, some parts that were initially
found to require individual programming, and the platform. The platform consists of
those parts found to be generic across all possible applications that are to be gen-
erated and thus must only be written once. An example for a platform might be an
enterprise framework like Java EE [10] or a web application framework like Ruby on
Rails2. In some cases it might be necessary to mix existing frameworks with new
source code to assemble the platform or even to exclusively rely on self-made code.

The transformation from the initial, high-level model to the final code artifacts will usu-
ally involve a set of cascaded transformations, increasing specificity with every step.
As illustrated in figure 2.4, the initial platform independent model (PIM) is being trans-
formed into more and more low-level platform-specific models (PSM), eventually be-
coming source code — which is actually just another PSM, but is often noted sepa-
rately for clarity. According to its name, every PSM relies on a platform, of which there
must be one for each abstraction level.

2http://rubyonrails.org/

17

http://rubyonrails.org/

2. Basic Concepts

PIM PSM
(Components)

PSM
(EJB 3)

Code
(Java, XML)

PSM
(JBoss)

Transformation Transformation

Transformation

Transformation

Figure 2.4.: An example for cascaded transformations. According to [9].

The cascaded transformations shown in figure 2.4 use several different DSLs — e.g.,
EJB 3 [12] and JBoss3, which contains a concrete implementation of the EJB 3 spec-
ification. This leads to the question about the origins of the specification of a DSL. To
explain this, the concept of metamodels and meta-metamodels must be introduced.

An application model on its own has no semantic value. To be interpreted, it must
be seen in the context of its DSL, which specifies the elements available to model an
application along with their meaning. To formally create a DSL, another model is being
created: a model describing the DSL. As this is a “model about a model”, it is referred
to as the metamodel of the DSL.

But this only shifts the definition of the model semantics up to a more abstract level.
Again, it is reasonable to question the semantics of the elements used in the meta-
model. To be able to define the elements permitted to be used in the description of a
metamodel, another shift up the abstraction hierarchy must be made: those elements
are defined in a meta-metamodel.

To avoid handing off the responsibility for the semantics to more and more abstract
meta-levels indefinitely, the meta-metamodel usually uses its own elements to describe
itself. These relationships lead to the hierarchy shown in figure 2.5.

The following example will clarify these relationships: A class diagram could define
a part of the model (level M1) for an application. In it, there might be a class called
Circle. A runtime system executing the application described in the model would
then create instances of the class Circle (level M0). But when Circle was de-
fined to be a class in M1, the semantics of “something being a class” had to be made
clear — so a metamodel (level M2) was referenced, which again is a model, only this
time declaring the Class element. To define what a Class is, the metamodel ref-
erences the meta-metamodell (level M3) — which is actually the metamodel’s meta-
model, since the “meta” relationship is always a relative one and the metamodel is a
model in itself. So the meta-metamodel provides the definition of a Classifier. As
it would not make any sense to abstract any further, the meta-metamodel uses itself to
define its own elements.

Summing this up, one might say: “This circle with a radius of 5 cm is an instance of the
class Circle. A Circle is the instance of the classifier Class. A Classifier is an instance
of the classifier Classifier. ”

3JBoss Application Server, http://jboss.org

18

http://jboss.org

2. Basic Concepts

M3: Meta-Metamodel

M2: Metamodel

M1: Model

M0: Instances

describes

describes

describes

describes instance of

instance of

instance of

instance of

Figure 2.5.: The relationships between the different meta layers, according to [9].

Since the general concept of model-driven development is completely independent of
specific standards and technologies, an overview of the standards used in the OMG’s
MDA approach [13] will now be given to put them in context, as some of the standards
will be referenced later in this thesis.

MDA uses the Unified Modeling Language (UML) [14] for modeling. MOF, the Meta
Object Facility [15], acts as the UML’s metamodel and can thus be used as the meta-
metamodel for all UML models. To annotate models with constraints, the Object Con-
straint Langage (OCL) [16] is used. The “Query / Views / Transformations” (QVT) [17]
specification defines mechanisms to create transformations between models — also
called model-to-model transformations. Model-to-text transformations, i.e., transforma-
tions that convert a given model to actual source code or other text-based artifacts, are
out of the scope of QVT and are not yet addressed by any specification. XML Meta-
data Interchange (XMI) [18] is used to serialize models to XML to enable transmission
and exchange.

2.4.2. UML Profiles

A UML profile is an extension of the existing UML or a part thereof and is a common
method to create a domain-specific language. By introducing new stereotypes and
tags into the UML, models can use terms that domain-experts can understand — e.g.,
an EJB expert could use an EJB Entitiy Bean element in their models, while an
insurance expert might use an Insurance Policy element when modeling an ap-
plication. Employing a DSL already has the advantage of enabling domain experts to

19

2. Basic Concepts

use a terminology they already know. The use of UML profiles as a means of creating
the DSL adds to that all the benefits of using standards — improving both comprehen-
sibility for human readers and processibility for machine readers.

In the context of model-driven development, the creation of UML profiles is a suit-
able strategy to define metamodels for application families. On the syntactic side,
the UML is a widely accepted standard understood by most developers and brings its
own standardized notation. On the semantic side, the UML already provides its own
meta-model, the Meta Object Facility (MOF), which has been mentioned before in the
MDA context. The MOF supplies a sufficiently rich and proven set of constructs for the
semantic decoration of custom metamodels created as UML profiles.

2.4.3. Consequences

Supported by a suitable development process, model-driven development can reach
several desirable improvements compared to conventional software development. While
the automatic generation of artifacts from models is a very obvious and tangible ad-
vancement, other effects are a little less apparent. Some of them will be outlined in the
following paragraphs to motivate the adoption of model-driven development.

In model-based development, models created in the requirements and design phases
merely serve as documentation. If something specified in these models changes dur-
ing the implementation phase, it is easy to just ignore the models and to introduce the
change in source code only. As models are part of the implementation in model-driven
development, this mismatch cannot occur. Changing the implementation results in a
semantically equivalent change in the model — and vice versa.

The creation of domain-specific languages improves communication between domain
experts and developers. As both parties use the same language to express the ap-
plication’s functionality, misunderstandings and therefore defects in the application are
far less likely than in traditional development. In some cases, it might for the same rea-
sons even be feasible to let the domain experts create the models — or at least parts
of them. Thus, overall application quality is improved as far as functional correctness
is concerned.

The separation of generated code from platform code is not merely a technical one,
but can also be organizational. While functional requirements are implemented in
the models — and, therefore, in the generated code —, technical requirements are
being solved by the platform and the generators. This permits the establishment of
two separate development branches and decouples functional from technical issues.
Thereby, greater independence between these branches is achieved, as changes in
either branch do not require the other one to replicate them. E.g., a technical change
like replacing a certain technology only needs to be reflected in the platform and the
transformations, while functional development can proceed undisturbed.

Once a DSL along with its transformations and a platform are available, functional
development does not need to restrict itself to a single application. By adding a model
for an application, functionally different software can be produced with greatly reduced

20

2. Basic Concepts

effort. Improvements such as better performance or corrected defects in parts shared
by multiple applications — i.e., those found in the platform or the transformations —
are removed in all of them without requiring additional care. This results in a consistent
level of quality for a whole application family.

21

3. Approach

This chapter describes the approach taken by this thesis to solve the problems stated
in section 1.2. Based on the description of the workflow of a process modeling tool,
the requirements for the graphical user interface of the tool will be presented. To solve
the problem of repetitive service implementations, the concept of Commodity Services
will be introduced. This chapter closes with the requirements for the generator to be
developed, while the next chapter will focus on the metamodel of the processes and
its graphical notation.

3.1. Intended Workflow

This section describes a workflow that aims at simplifying problems identified in section
1.2. For this workflow to be realized, software implementing it needs to be written, from
now on referred to as Composr. After this section and the following one introduce the
workflow, the sections following them will provide details about the supporting software
that the workflow will require.

To permit the modeling of processes, the software will provide the user with a palette
of elements representing activities possible in the model, as well as a canvas on which
the elements can be arranged. To connect the activities, a transition element will be
provided. Below is a list of the elements and their meaning in the context of BPEL.

• receive element
Equivalent to BPEL’s <receive> element, signifying the blocking wait for a mes-
sage to be received by the process.

• reply element
Equivalent to BPEL’s <reply> element, to realize the returning of messages
back to client.

• invoke element
Equivalent to BPEL’s <invoke> element. Used to invoke Web Services with a
message possibly containing a payload, and to acquire the resulting message
from the Web Service.

• flow element
Equivalent to BPEL’s <flow> element, to permit the parallel execution of activi-
ties.

22

3. Approach

• pick element
Equivalent to BPEL’s <pick> element. Used to wait for incoming messages of
multiple possible types or the occurence of a timer event.

• if element
Equivalent to BPEL’s <if> element, providing branching into different activities
based an the evaluation of an expression that has a logical value.

• loop element
Equivalent to BPEL’s <while>, <repeatUntil>, and <forEach> elements.
Permits the optionally parallel repetition of an activity based on a counter or a
logical value.

The process itself will be represented implicitly by the canvas containing all these ele-
ments.

Employing these elements, the Composr software will support a workflow consisting
of three phases for the user and one phase executed by the software. Each phase
corresponds to one role held by the user of the software. While each role may be
assigned to a different person, this is not a requirement; it is perfectly reasonable for
a single person to hold each of the participating roles or to have multiple persons fulfil
the tasks of a single role. Figure 3.1 shows a diagram illustrating the workflow.

Pr
o
ce

ss

M
o
d
el

er
D

ev
el

o
p
er

Develop an executable Process

D
ep

lo
ye

r
G

en
er

at
o
r

Model the
Process

Configure the
Process

Generate the
Artifacts

Deploy the
Process

Add
Deployment

Details

Figure 3.1.: The workflow of the Composr application. The notation is UML Activity
Diagrams [19].

In the first phase, the user holds the role of the Process Modeler, who will model
a business process using a graphical notation provided by the tool without entering
any element-specific configuration data. This will result in a very compact diagram of
the process which might not be easy to understand by persons not familiar with the

23

3. Approach

modeled process, but will provide the involved roles with a general overview of the
executable process they are creating.

The role of the Developer will take over in the second phase, in which the modeled
process is being configured. The Developer role is being introduced as this phase
requires some technical knowledge of a lower abstraction level than before. Below is
a list of configuration options for each element.

• process element

– a name

• receive element

– an operation name

– a list of parameters, i.e., (name, data type) tuples

• reply element

– a reference to a receive element that is able to reach this element

– a list of named return types, i.e., (name, data type) tuples

– for each data type, a value to be returned

• invoke element

– a service to invoke

– an operation from the service’s interface

– a value for each parameter of the chosen operation

• pick element

– for each outgoing transition, an operation name to support, and additionally,
if the pick element is not the first receiving activity in the process, an alarm,
i.e., a time span or a point in time; with at least one operation in this list

– for each operation, a list of parameters, i.e., (name, data type) tuples

• if element

– for each outgoing transition, an XPath expression with boolean value, with
all these expressions being mutually exclusive

• loop element

– whether to use a boolean expression or a counter for looping

– if the boolean option was chosen: an XPath expression with boolean value
to decide whether to continue looping after each iteration

– if the boolean option was chosen: whether to execute the contained activity
at least once

24

3. Approach

– if the counter option was chosen: an XPath expression with unsigned inte-
ger value, defining the final value of the counter

– if the counter option was chosen: whether to execute the repetitions in par-
allel

In the third and final phase, the role of the Deployer will create deployable archives
from the modeled process. The tool will ask the deployer for several additional details
— shown below — that can vary from deployment to deployment.

• a base endpoint at which the generated services will be deployed, e.g., http:
//localhost:8080/axis, if the service with the name “AService” would be
deployed at http://localhost:8080/axis/AService

• a namespace to use for the process, which will also be the base namespace for
the generated services

• a directory to save the generated artifacts to

Once these details have been entered and confirmed by the Deployer, the tool will
start the Generator, which will create deployable archives for the process and for each
Commodity Service. The Deployer will be informed once generation is done and can
start deploying the generated archives.

3.2. Scenario

For a better illustration of the vision directing the development of the workflow and its
associated software, this section describes the intended workflow depicted in 3.1 in a
story-like manner. For better illustration of the process, at some points in the scenario
fragments of the current model will be presented in a generic notation.

The workflow starts with a user U having a goal. U is a developer at a mid-sized
company that wants to start exploring SOA, especially to integrate better with the IT
processes of two large suppliers — namely, a supplier for cables and a supplier for
cable connectors.

U has already read some literature about SOA, Web Services, and BPEL, and also
developed some simple BPEL processes and Web Services. But U quickly recognized
that the tool he used to create the BPEL didn’t really let him concentrate on what he
was trying to achieve. Instead, he was trying to overcome namespace problems he
didn’t really understand and was busy creating assign activities when all he wanted
to do was invoking a Web Service or returning a value to the client. Also, U quickly got
weary of developing yet another Web Service when all he just needed was to persist
another class of data objects. When U found out about Composr, he was interested
and tried it out.

25

http://localhost:8080/axis
http://localhost:8080/axis
http://localhost:8080/axis/AService

3. Approach

Composr presents to U a canvas on which to draw his process and a palette of the
elements he can use. As he already has some knowledge about BPEL and Web
Services, he quickly identifies the meaning of the notation elements. The first thing
he notices is a symbol for transitions from one activity to another. Then, he finds the
equivalents to BPEL’s receive, reply, and invoke activities as well as those for the
flow, pick, and if activities. He also finds an element for repeating activities, but
instead of the three different ones BPEL provides, he can see only a single one, called
loop. Additionally, he finds elements marking the start and the end of the process
— he does not know these from BPEL, but since the palette provides tooltips, he soon
understands what they mean. He does not find an element for the assign activity,
which he notices with relief.

3.2.1. Process Modeling

U starts modeling a process that he wants to use to place orders with the suppli-
ers. In his prior exploration of BPEL and Web Services, he has written local mocks
for their services already. One supplier published his CableService, providing the
operations searchCables and orderCables. The other supplier published the
ConnectorService, providing the searchConnectors and orderConnectors
operations.

In the first stage, he does not care about details like data types, condition expressions
or service endpoints. To gain an overview of his process model, he just wants to create
all the model elements he needs. He knows, he can always configure them later.

First, he places a start and end end element on the canvas, so he does not forget
them. Then, he adds a receive element, as he wants to receive keywords for a
search. He means to use the keywords in a product search, using the searching
operations of the suppliers’ services. So he adds an invoke element for each service,
enclosing them in a flow for parallel execution.

Start EndReceive Flow

Invoke

Invoke

Reply ReceiveFlowEnd

Figure 3.2.: An excerpt from U’s current process model.

After the flow element, U adds a reply so he can return the search results to the
client application, followed by another receive. He intends this to accept the actual
order from the client (figure 3.2).

U appends another flow, this time to invoke the ordering operations of the services.
After adding the invoke elements, he attaches a pick event to each and closes the

26

3. Approach

flow. He uses the pick elements since the order services are asynchronous services
— he wants the process to wait for a reply from each service (figure 3.3).

Flow

Invoke

Invoke

FlowEnd

Pick

Pick

Receive End

Figure 3.3.: An excerpt from U’s current process model.

The next element he adds is an if element. Into one branch, he only puts a reply
element, as he wants to return an error message here. Into the other branch, U places
two invoke elements, each enclosed in a loop element. Around these, he creates
a flow element so both services are being invoked in parallel. He wants to use the
invoke elements to save the orders he placed on a machine of his company. Lastly,
he lets a reply element follow the loop, so he can return a success message to the
client.

U has created all activities required for his process. From time to time, he has con-
nected them using the transition element, and now connects the last activity, the if,
to the end element (figure 3.4).

EndIf Reply

InvokeLoop LoopEnd

InvokeLoop LoopEnd

Reply

FlowEnd

Pick

Pick

IfEnd

Flow FlowEnd

Figure 3.4.: An excerpt from U’s current process model.

3.2.2. Process Configuration

U starts the configuration by choosing the initial receive element and assigning it the
operation name searchProducts. He defines the argument of this operation to be an
array of strings, which he calls keywords.

As there is no configuration to do for the flow element, U continues with the two ser-
vice invokations contained in the flow. For each service, he chooses the WSDL file
describing it by specifying the path to each on his computer’s filesystem. He could
also have opted to enter a URL to each file. Now that Composr knows about the op-
erations provided by the services, it displays the available operations for each and lets

27

3. Approach

U choose one. U chooses the searchCables and searchConnectors operations,
upon which he needs to choose the data input for the parameters accepted by the
operations. He chooses to connect the keywords array to the queryTerms parameter
each operation provides. For the searchCables operation, he sets the maxLength
parameter to the literal value of 50.

Now, U configures the reply element directly following the flow. He assigns it to be
a reply to the initial receive, choosing that from a list of possible receive elements.
As there is only one that can reach the reply, he chooses the only element contained
in the list. Next, U defines the reply to return two return attributes. He calls the first
one cableResults and sets its data type to the SearchResultArray type provided by the
CableService. The second one, he names connectorResults and sets its data type
to the Results type provided by the ConnectorService. Now that Composr knows
the interface of the reply element, U can determine which values are to be returned.
He connects the cableResults attribute to the CableService’s results attribute and
the connectorResults attribute to the ConnectorService’s productsFound attribute.

As the name of the following receive, U chooses placeOrders. He defines it to take
two parameters. One is called cableOrders, which is an array of the Order type defined
by the CableService. The other parameter is called connectorOrders, which is an
array of the ProductOrder type defined by the ConnectorService.

U configures the invoke elements similar to the previous ones. Only now, he sets
the values retrieved by the preceding retrieve to be sent to the orderCables and
orderConnectors operations.

He sets the pick elements following each invoke to receive the two types of callback
messages each of the two invoked operations supplies: one for a successful order,
and one for an order that has failed. Additionally, U adds a timer event to the picks, set
to fire after 15 minutes of waiting for the services’ replies.

In the following if element, U specifies the conditions of the two branches. He uses an
XPath expression to determine whether at least one of the orders returned a success
message. If so, the process will pursue the branch containing the loop elements. If
not, the process will continue with the single reply element and then end.

U configures the loop elements to each use a counter for looping. He defines the
repetitions to be executed in parallel and sets the final counter value to be the size of
the respective order arrays, which he does by referencing the values returned by the
ordering services and manually fetching the size of the arrays in XPath.

For the invoke elements in the loops, U chooses a service already built into Com-
posr: a Commodity Service called PersistenceService. For each invoke, he
selects the save operation and connects to it the array of orders returned by each
respective ordering service. To be able to address each order item individually, U opts
for manually editing the XPath expressions, now pointing at the orders arrays. He ap-
pends to the existing expression the simple selection of the nth element of the array,
with n being the current value of the surrounding loops’ counters — as Composr rec-
ognizes that what U is editing is inside a loop with a counter, it makes the counter
value available just like the received values before. This ensures that for each part of

28

3. Approach

the orders array, the PersistenceService is invoked once.

As the invoke elements invoking the PersistenceService are contained in loop
elements, Composr provides arrays of the aggregated values of all invocations therein.
U connects these to the reply element’s cableOrderParts and connectorOrderParts
attributes.

Finally, U specifies the single reply message to return an errorMessage of the type
string, and sets its value to be the literal string “All orders failed. ”.

3.2.3. Generation and Deployment

Now that U is done configuring the process, he can start the generation. After activat-
ing the generate menu option, the system asks U about a directory where to save the
generated artifacts and a namespace to use. U enters both and confirms his choice.

Composr’s generator now examines the process modeled and configured by U and
produces several source files as output: a BPEL process, a WSDL definition for the
process and an XML Schema definition to be used by the process and the generated
services alike. For the service U specified, the generator creates a service imple-
mentation in Java, including classes for the data objects used, as well as a matching
WSDL and an XML Schema definition, specifying the messages understood by the
service. After the source code generation, the system creates deployable archives of
the created service and the process.

U drops the process and service archives into their designated places in his Apache
Tomcat1 directory, which has the ActiveBPEL Engine2 and the Axis23 Web Service
engine servlet installed.

Both archives deploy without problems and U begins work on his client application —
which concludes the workflow description.

3.3. Graphical User Interface

The approach presented in this thesis aims at simplifying SOA development by sup-
porting a higher abstraction level when creating executable processes. In order to
achieve this, solid support from the graphical user interface is required. This section
provides details on the requirements for the user interface to achieve this support. In
doing so, the separation into three phases introduced in section 3.1 is reused.

The first phase, executed by the role of the Process Modeler, deals with the graphical
modeling of processes. As BPEL itself has no implied graphical representation, a
suitable notation needs to be chosen. The aim of the notation must not be the exact

1http://tomcat.apache.org/
2http://active-endpoints.com/active-bpel-engine-overview.htm
3http://ws.apache.org/axis2/

29

http://tomcat.apache.org/
http://active-endpoints.com/active-bpel-engine-overview.htm
http://ws.apache.org/axis2/

3. Approach

replication of all elements present in BPEL, as the approach tries to abstract from
it, enabling a more domain-oriented approach to business process modeling — so a
more general notation is needed that can be employed by business users. Also, the
notation should at least be readable by all represented roles, i.e., domain experts as
well as developers and deployers should be able to intuitively understand the meaning
of a process with little prior training.

The configuration phase requires an already modeled process, so the role dealing
with this phase does not need to be able to actually use the notation. Understanding
the basic flow of a modeled process is important, though, since specific configuration
data must be applied to most elements. The user interface should support this speci-
ficity by providing custom configuration dialogs for each element while still maintaining
consistency across dialogs.

All dialogs should be context-aware, i.e., they should shield the user from irrelevant
options as efficiently as possible — an example would be the reply element’s con-
figuration dialog, in which the reference to a receive element must be set. The
available options should only contain those receive elements that can actually reach
the reply being edited.

Where needed, the dialogs must provide additional abstractions for easier configura-
tion. E.g., the configuration of an invoke element contained in a loop element should
display data sources specific to the loop element it is contained in. An example for
this would be the availability of the current counter value of the loop — if and only if it
actually employs a counter.

Apart from element-specific dialogs, the system should provide several supporting di-
alogs not directly targeted at the configuration of a concrete element, but nevertheless
required for successful usage of the tool. Below follows a list of these dialogs.

• Service Library
To prevent the user from repeatedly providing the path or URL to WSDL descrip-
tions in the invoke element’s configuration dialog, the system should provide
a facility to add, edit, and remove service descriptions. In the configuration di-
alog for the invoke element, the system should provide a selection list of the
service descriptions already present in the Service Library as well as a shortcut
to manage these service descriptions. The available services include the list of
the Commodity Services (see section 3.5) available in the system, which cannot
be modified using the user interface. If the user chooses to manually add a ser-
vice description directly in the invoke configuration screen, the system should
automatically add the selected WSDL to the Service Library.

• Types Editor
To allow for the creation of custom data types to be used in the process, the
system should provide an editor for data types which allows the creation, modifi-
cation, and deletion of user-created data types. This does not imply a complete
XML Schema editor, but rather a simple graphical interface that allows for the
creation of new types by letting the user choose a name for a new type and as-

30

3. Approach

sign to it a list of attributes that each also are given a name and a type from the
list of the existing types. The list of the existing types includes the types native to
XML Schema, types extracted from the WSDL descriptions of the services used
in invoke elements, as well as custom types previously created by the user.

• Type Chooser
In the receive and reply configuration dialogs, the user needs to select data
types to use in the process’s interface. The system should provide a type chooser
dialog that provides a selection list of all types known to the tool, i.e., the same
types mentioned in the description of the Types Editor.

• Data Mapping Templates
To simplify mappings from one or more source data types to one or more target
data types, the system should provide a facility for saving, editing, deleting, and
selecting templates for such mappings. This template library should be available
from all relevant dialogs, e.g., the dialogs for the configuration of the receive,
reply, and invoke elements, providing a shortcut for the instant application
of a chosen mapping to previously selected data types. Figure 3.5 shows two
examples for such mappings.

firstName
lastName

birthday

serviceA.Person
name_last
name_first
birthdate

serviceB.Person
A mapping between
the different Person
data types of two
services.

street
zip
city

country

serviceA.Address

firstName
lastName
street
zip
city

process.Contact
A mapping to join
two data types of
different services to
a single data type of
the process.

name_last
name_first

birthdate

serviceB.Person

Figure 3.5.: Two examples for data mappings.

In the third phase, artifacts are being generated from the process and those artifacts
are deployed by the user. To enable efficient generation, the notation used to model
the process should support a block-based structure instead of a graph-based one —
similar to most BPEL elements, except for the <flow> element. This would avoid
expensive calculations checking the activity graph for validity or even restructuring it to
achieve compliance with the BPEL specification. E.g., as cycles in <flow> graphs are
forbidden in BPEL, the usage of an explicit loop element is suggested.

31

3. Approach

Before starting the generation, the user interface must provide means to let the user
enter data that might change for each deployment, especially the directory into which
to place the generated artifacts, the namespace to use in the XML and a base for the
endpoints of Commodity Services used in the process. When generation has finished,
the user might be offered to directly go to the directory he specified for generation
before.

3.4. Generator Requirements

The generator should be callable from the graphical user interface and take a process
model as its input. From this, the following artifacts should be generated.

• A BPEL process representing the process modeled in the graphical editor.

• A WSDL file describing the interface provided by the process.

• An XML Schema file defining the custom types used in the process.

• For each Commodity Service invoked,

– a WSDL file describing the interface of the service,

– an XML Schema file defining the messages used in the service,

– an implementation of the service in a form usable for deployment in a Web
Services engine,

– a set of libraries used by the service.

All of these artifacts will be properly referencing each other, i.e., the BPEL process will
reference its own WSDL as well as those of the services it invokes and the WSDL files
will reference the XML Schema files defining the data types used.

A metamodel is formally introduced in chapter 4, which will ensure proper alignment
between the graphical user interface and the generator.

To stay consistent with the integrated nature of the proposed tool, the result of the gen-
eration should be instantly deployable into standard containers. To keep the scope of
this thesis reasonable, reference containers are defined: the process archive should be
deployable into an Apache Tomcat installation running ActiveEndpoints’ ActiveBPEL
Engine; the service archives should be deployable into an Apache Tomcat installation
running the Apache Axis24 Web Services engine.

To support the continued utilization of the generated artifacts, their source code should
be preserved and provided to the user after generation. Should the tool’s abstractions
prevent sufficient access to implementation details of the artifacts, this will ensure that
standard tools can be employed to further develop the process originally modeled

4Apache Axis2: http://ws.apache.org/axis2/

32

http://ws.apache.org/axis2/

3. Approach

using the proposed tool. Also, the generated source code should be as readable
as reasonably possible — e.g., XML should be indented according to its structure and
generated variables should be given names that reflect the semantics of the variables.

The creation of custom generators by third parties should be accounted for in the
API of the software. This will allow replacing all technologies used in the generated
artifacts, e.g., workflow languages other than BPEL could be supported or Commodity
Services could be implemented in a programming language other than Java, using a
different Web Services stack. A process once modeled in the proposed tool would thus
be technology-agnostic. Although the technology used in this thesis is the most widely
used, other technologies might be more suitable for niche industries or for exploration
projects.

3.5. Commodity Services

To remove some manual programming work from the development of executable pro-
cesses, the software application proposed in this thesis employs the concept of Com-
modity Services. These are services that do not exist yet, but can be generated from
the data provided in the invoke element’s configuration dialog. The name Commod-
ity Service was chosen to reflect that several business functions that still need to be
programmed manually should be a commodity today, as they present problems that
have already been solved generically and could thus be automated.

Of course, not every service is suitable for such a generation — the concept of Com-
modity Services is targeted at business functions that only vary based on the available
configuration data and can thus easily be generated. For each Commodity Service,
the software must include a specialized generator.

One example is the persistence of arbitrary data types — depending on the data type
passed to the service in the configuration of the invoke element, a different service
will be generated, providing persistence functions for the respective type. Possible
operations provided by the service might be the creation, modification, deletion, and
selection of values of the data type persisted by the service. E.g., invoking the per-
sistence service with a value of the type Person would result in the generation of a
PersonPersistenceService. Of course, other types of Commodity Service are
imaginable, a selection will be outlined in section 8.2.2.

To allow for the easy modification of the software by third parties wishing to provide
their own generators for Commodity Services, the application’s API should be struc-
tured in a way suitable for this kind of extension.

3.6. Summary

This chapter introduced the general approach to business process modeling and gen-
eration pursued by this thesis. The workflow intended to be supported by a software

33

3. Approach

application has been outlined. Requirements for the graphical user interface and the
generator needed to support the proposed workflow were determined. It has been
shown that the perspectives of different roles will be supported, enabling each to con-
centrate on their own field of knowledge. The concept of Commodity Services was
introduced, which promises to free developers from repetitive tasks present in many
SOA projects, by generating certain services from configuration data.

Figure 3.6 gives a high-level overview of the functionality of the Composr software.

Composr Software

generates

readscreates

calls

«instanceof»

understands

GUI

Process
Model

Generator

Metamodel

Artifacts

Figure 3.6.: A high-level overview of the Composr software.

34

4. The Composr UML Profile

To formally define the elements needed to represent the workflow presented in the pre-
ceding chapter, this chapter introduces a metamodel for executable processes. The
first section defines the elements and their semantics by creating a UML profile and
annotating it with OCL constraints, while the second section defines the graphical rep-
resentation for the elements. Mapping the elements of the metamodel to a BPEL
process and associated artifacts will be outlined in chapter 5.

4.1. Metamodel

This section presents the metamodel developed as a formal basis for this thesis’ ap-
proach. To preserve clarity, several decisions have been made:

• The metamodel has been partitioned into multiple diagrams, each responsible
for a particular area.

• The constraints, written in OCL1, were not included in the diagrams, but appear
in the describing text.

• Every class not showing an explicit extension is extending
UML::Classes::Kernel::Class implicitly, even though this is not be-
ing shown in the diagrams.

• The class name ActivityNode is used as a shorthand for
UML::Activities::FundamentalActivities::ActivityNode.

• The class name ActivityEdge is used as a shorthand for
UML::Activities::BasicActivities::ActivityEdge.

• Every unnamed role in an association, composition, or aggregation implicitly has
been given the name of the target stereotype, with its first letter being lower-
case — e.g., an association from a StructuredActivity to an OpenElement
implicitly can be referenced as openElement from the StructuredActivity.

4.1.1. Foundation

Figure 4.1 introduces the basic elements of the Composr metamodel. The Linkable
stereotype acts as a general interface for all elements that should be connected using

1Object Constraint Language, http://omg.org/docs/ptc/03-10-14.pdf

35

http://omg.org/docs/ptc/03-10-14.pdf

4. The Composr UML Profile

«profile» Composr (CPSR)

«stereotype»
Start

«stereotype»
End

«stereotype»
Linkable

«stereotype»
Link «stereotype»

source

«stereotype»
target

name: String

«stereotype»
Process

«stereotype»
incomingLinks

«stereotype»
precedingLinks

*

*

«stereotype»
Activity

«stereotype»
start

«stereotype»
end

«stereotype»
BasicActivity

«stereotype»
Structured

Activity

ActivityNode

ActivityEdge

«stereotype»
succeedingLinks

*

«stereotype»
outgoingLinks

*

1

1

1 1

Figure 4.1.: Composr Metamodel: Foundation.

source and target Links; The Start and End stereotypes as well as the stereotypes
for the different kinds of activities inherit from it. Linkable extends ActivityNode
while Link extends ActivityEdge, both of which stem from the UML Activities pack-
age. A Link always has a target and a source Linkable. Linkable itself has four
collections of Links.

The incomingLinks and outgoingLinks collection have the obvious semantics as
defined in listing 4.1.

1 context L inkab le
2 inv : s e l f . outgoingLinks�> f o r A l l (l i n k : L ink | l i n k . source = s e l f and not (

l i n k . t a r g e t = s e l f))
3 inv : s e l f . incomingLinks�> f o r A l l (l i n k : L ink | not (l i n k . source = s e l f) and

l i n k . t a r g e t = s e l f)

Listing 4.1: A part of the OCL constraints for the Linkable stereotype.

The precedingLinks — the Links leading up to the Linkable — and succeed-
ingLinks — the Links following the Linkable — are required for some constraint
definitions regarding the nesting of StructuredActivities. Listing 4.2 formalizes
them using two OCL constraints.

1 context L inkab le
2 inv : s e l f . precedingLinks = s e l f . incomingLinks�>union (
3 s e l f . incomingLinks�>s e l e c t (
4 l i n k : L ink | l i n k . source oc l I sK indOf CloseElement
5)�>c o l l e c t (
6 l i n k : L ink | l i n k . source . openElement . precedingLinks

36

4. The Composr UML Profile

7)�>asSet ()
8)�>union (
9 s e l f . incomingLinks�>s e l e c t (

10 l i n k : L ink | not (l i n k . source oc l I sK indOf CloseElement) and not (l i n k .
source . type oc l IsK indOf S t r u c t u r e d A c t i v i t y)

11)�>c o l l e c t (
12 l i n k : L ink | l i n k . source . precedingLinks
13)�>asSet ()
14)
15 inv : s e l f . succeedingLinks = s e l f . outgoingLinks�>union (
16 s e l f . outgoingLinks�>s e l e c t (
17 l i n k : L ink | l i n k . t a r g e t oc l I sK indOf S t r u c t u r e d A c t i v i t y
18)�>c o l l e c t (
19 l i n k : L ink | l i n k . t a r g e t . closeElement . succeedingLinks
20)�>asSet ()
21)�>union (
22 s e l f . outgoingLinks�>s e l e c t (
23 l i n k : L ink | not (l i n k . t a r g e t oc l I sK indOf closeElement) and not (l i n k .

t a r g e t oc l I sK indOf S t r u c t u r e d A c t i v i t y
24)�>c o l l e c t (
25 l i n k : L ink | l i n k . t a r g e t . precedingLinks
26)�>asSet ()
27)

Listing 4.2: A part of the OCL constraints for the Linkable stereotype.

Listing 4.3 contains the constrains for the Start and End element, amongst others
guaranteeing a Start element to always lead to an End element across any number
of Links and the other way around.

1 context S t a r t
2 inv : s e l f . succeedingLinks�>e x i s t s (l i n k : L ink | l i n k . t a r g e t = process . end)
3 inv : s e l f . incomingLinks . s i ze () = 0
4 inv : s e l f . ou tgo ingL inks . s i ze () = 1
5

6 context End
7 inv : s e l f . precedingLinks�>e x i s t s (l i n k : L ink | l i n k . source = process . s t a r t

)
8 inv : s e l f . incomingLinks . s i ze () = 1
9 inv : s e l f . ou tgo ingL inks . s i ze () = 0

Listing 4.3: A part of the OCL constraints for the Linkable stereotype.

The constraints shown in listing 4.4 further refine the flow of Links between BasicActivities
and StructuredActivities.

1 context Link
2 inv : not (s e l f . source = s e l f . t a r g e t)
3

4 context B a s i c A c t i v i t y
5 inv : (inv : s e l f . precedingLinks�>e x i s t s (L_1 : L ink | L_1 . source oc l I sK indOf

S t r u c t u r e d A c t i v i t y) implies s e l f . succeedingLinks�>e x i s t s (L_2 : L ink |
L_2 . t a r g e t = L_1 . source . closeElement)

6 inv : s e l f . incomingLinks . s i ze () = 1
7 inv : s e l f . ou tgo ingL inks . s i ze () = 1
8

37

4. The Composr UML Profile

9 context S t r u c t u r e d A c t i v i t y
10 inv : s e l f . succeedingLinks�>e x i s t s (l i n k : L ink | l i n k . t a r g e t = s e l f .

closeElement)
11 inv : s e l f . ou tgo ingL inks . s i ze () = s e l f . closeElement . incomingLinks . s ize ()
12 inv : s e l f . ou tgo ingL inks . s i ze () > 0
13 inv : s e l f . incomingLinks . s i ze () = 1
14 inv : s e l f . c loseElement . openElement = s e l f

Listing 4.4: Additional OCL constraints for the basic elements of the metamodel.

4.1.2. Basic Activities

«profile» Composr (CPSR)

«stereotype»
BasicActivity

«stereotype»
Receive

«stereotype»
Reply

«stereotype»
DataMapping

«stereotype»
Invoke

«stereotype»
Service

«stereotype»
Service

Operation

«stereotype»
outputMapping

«stereotype»
inputMapping

«stereotype»
Process

Operation

1
1

1

1

1

1

Figure 4.2.: Composr Metamodel: Basic Activities.

The diagram presented in figure 4.2 shows the part of the metamodel mostly con-
cerned with the BasicActivity. The Receive, Reply and Invoke stereotypes
are all BasicActivities. To assign values to parameters passed to remote part-
ners, the Invoke and Reply stereotypes employ a DataMapping, which will be
examined further in figure 4.5. Each Receive and Reply element takes part in a
ProcessOperation, while an Invoke element uses a ServiceOperation offered
by a Service. Relevant constraints are being shown in listing 4.5.

1 context Reply
2 inv : s e l f . precedingLinks�>e x i s t s (l i n k : L ink | l i n k . source = s e l f . rece ive)
3

4 context Invoke

38

4. The Composr UML Profile

5 inv : s e l f . se rv i ce . operat ions�>e x i s t s (o : Operat ion | o = s e l f .
serv iceOpera t ion)

Listing 4.5: OCL constraints for the portion of the metamodel primarily concerned with
the descendants of BasicActivity.

4.1.3. Services

«profile» Composr (CPSR)

«stereotype»
Process

Operation

«stereotype»
Type

Definition

«stereotype»
XMLSchema

Type
Definition

«stereotype»
Service

Interface

«stereotype»
WebService

«stereotype»
Commodity

Service

«stereotype»
parameters

«stereotype»
parameters

«stereotype»
results

*

«stereotype»
results

*

name: String

«stereotype»
NamedType

XMLS:Type

name: String

«stereotype»
Service

name: String

«stereotype»
Operation

location: URI

«stereotype»
WebService

Interface

*

* * 1

1

11 1

classname: String

«stereotype»
Commodity

ServiceInterface
className: String

Figure 4.3.: Composr Metamodel: Services.

In Figure 4.3, attention is being paid to services. There are two kinds of services
— the WebService and the CommodityService — and each has a specialized
ServiceInterface. Each ServiceInterface has multiple Operations, which,
like a ProcessOperation, each have two sets of NamedTypes— its parameters and
its results. A NamedType is a tuple of a name and a TypeDefinition. The concrete
kind of TypeDefinition used in this thesis is the XMLSchemaTypeDefinition,
which has an XMLNS:Type as defined by [1]. There are no additional OCL constraints
for these stereotypes.

39

4. The Composr UML Profile

«profile» Composr (CPSR)

«stereotype»
Process

Operation

«stereotype»
Pick

«stereotype»
PickClose

«stereotype»
If

«stereotype»
IfClose

«stereotype»
LoopClose

«stereotype»
Flow

«stereotype»
FlowClose

«stereotype»
Structured

Activity

«stereotype»
CloseElement

«stereotype»
openElement

«stereotype»
closeElement

duration: String
deadline: String

«stereotype»
Timer

«stereotype»
Query

Expression

«stereotype»
conditions *

useCounter: boolean
executeFirst: boolean
isParallel: boolean

«stereotype»
Loop

«stereotype»
condition

«stereotype»
finalCounterValue

1..*

*

1

1 0..1

0..1

Figure 4.4.: Composr Metamodel: Structured Activities.

4.1.4. Structured Activities

Figure 4.4 shows the StructuredActivities present in the metamodel — Flow,
Pick, If and Loop — as well as their CloseElements. The Timer element’s
timespan and dateTime are constrained according to their respective counterparts
“duration-expr” and “deadline-expr”, as defined in section 11.6 in the WS-BPEL 2.0
specification [8]. Listing 4.6 adds some OCL constraints.

1 context Pick
2 inv : s e l f . c loseElement oc l I sK indOf PickClose
3 inv : s e l f . incomingLinks�>e x i s t s (l i n k : L ink | l i n k . source oc l I sK indOf

S t a r t) implies s e l f . t imers . s i ze () = 0
4 inv : s e l f . processOperat ions . s ize () > 0
5

6 context PickClose
7 inv : s e l f . openElement oc l I sK indOf Pick
8

9 context I f
10 inv : s e l f . c loseElement oc l I sK indOf I fC lose
11 inv : s e l f . ou tgo ingL inks . s i ze () == s e l f . cond i t i ons . s i ze () or s e l f .

ou tgo ingL inks . s ize () == s e l f . cond i t i ons . s ize () + 1
12

13 context I fC lose
14 inv : s e l f . openElement oc l I sK indOf I f
15 inv : s e l f . cond i t i ons�> f o r A l l (qe : QueryExpression | qe . resu l tType =

QueryResultType : : boolean)
16

17 context Loop

40

4. The Composr UML Profile

18 inv : s e l f . ou tgo ingL inks . s i ze () = 1
19 inv : s e l f . c loseElement oc l I sK indOf LoopClose
20 inv : s e l f . c o n d i t i o n . resu l tType = QueryResultType : : boolean
21 inv : s e l f . f i na lCoun te rVa lue . resu l tType = QueryResultType : : uns ignedInteger
22 inv : s e l f . useCounter = t rue implies s e l f . c o n d i t i o n = n u l l
23 inv : s e l f . useCounter = t rue implies execu teF i r s t = f a l s e
24 inv : s e l f . useCounter = f a l s e implies s e l f . f i na lCoun te rVa lue = n u l l and

i s P a r a l l e l = f a l s e
25

26 context LoopClose
27 inv : s e l f . openElement oc l I sK indOf Loop
28

29 context Flow
30 inv : s e l f . c loseElement oc l I sK indOf FlowClose
31

32 context FlowClose
33 inv : s e l f . openElement oc l I sK indOf Flow

Listing 4.6: The OCL constraints for the StructuredActivities.

4.1.5. Data

«profile» Composr (CPSR)

«stereotype»
XPath

Expression

«stereotype»
DataMapping

«stereotype»
DataSource
TargetPair

«stereotype»
DataTarget literal: String

«stereotype»
DataSource

*

«stereotype»
ReceiveData

Source

«stereotype»
InvokeData

Source

«stereotype»
Receive

«stereotype»
Invoke

1

1

0..11

11

«stereotype»
ReplyData

Target

«stereotype»
InvokeData

Target

«stereotype»
Reply

«stereotype»
Invoke

1

1 «stereotype»
path

«stereotype»
path

node
boolean
unsignedInteger

«enumeration»
Query

ResultType

«stereotype»
QueryExpression

resultType: QueryResultType

Figure 4.5.: Composr Metamodel: Data.

Figure 4.5 is concerned with how data from Receive and Invoke elements is used
in Reply and other Invoke elements. Listing 4.7 shows additional OCL constraints

41

4. The Composr UML Profile

relevant to this portion of the metamodel.

1 context DataSource
2 inv : (s e l f . l i t e r a l = n u l l and not (s e l f . path = n u l l)) or (not (s e l f . l i t e r a l

= n u l l) and s e l f . path = n u l l)
3 inv : s e l f . path . resu l tType = QueryResultType : : node
4

5 context DataTarget
6 inv : s e l f . path . resu l tType = QueryResultType : : node

Listing 4.7: OCL constraints for the portion of the metamodel concerned with data flow.

4.2. Notation

To tailor the presentation of the semantics defined in the metamodel to the needs of
this thesis’ approach, this section defines a notation for the Composr UML profile. The
graphical elements are based on UML Activities — commonly referred to as Activity
Diagrams — as defined in [19].

Since there is no standard notation for BPEL processes, existing BPEL editors usually
invent their own notation. As the main intent of these notations is the presentation in
their respective tool only, the graphical elements easily become rather intricate. This
may lead to notations that are unsuitable for simple drawing on paper and process
models that appear too complicated for intuitive understanding.

As an example, the notation used in Active Endpoints’2 ActiveBPEL Designer3 can be
seen in section 4.2.2, in which a survey comparing two different notations is presented.

It is a basic assumption of this thesis that a notation for modeling executable business
processes should be easily understandable by both domain experts and technology
experts, and that these should be able to intuitively grasp processes modeled using
that notation — maybe not resulting in a complete understanding, but at least provid-
ing a rough overview and orientation, improving communication between roles. The
notation presented in this section is aimed at reaching these goals.

4.2.1. Initial Draft

After the examination of existing approaches, two widely tried notations for executable
business processes were identified: BPMN [20] and UML’s Activity Diagrams [19].

While BPMN is directly targetted at modeling business processes, it has been found
to be difficult to map it to BPEL[21]. Also, the relatively high number of different ele-
ments present in even simple BPMN models seemed to contradict the requirements
formulated before.

2http://active-endpoints.com/
3http://www.active-endpoints.com/active-bpel-designer.htm

42

http://active-endpoints.com/
http://www.active-endpoints.com/active-bpel-designer.htm

4. The Composr UML Profile

For Activity Diagrams, approaches successfully creating a UML profile with a mapping
to BPEL4WS exist [22], [23]. Although the problems found in the BPMN mappings
were not encountered here, the profiles pursued a direct mapping between Activity
Diagrams and BPEL, effectively requiring the user to recreate in UML the structure
found in the XML.

Further discussion of this issue can be found in chapter 7.

Activity Diagrams were chosen as a basis for the notation developed in this thesis, as
they define a very concise set of elements and are part of a proven, extendable stan-
dard — the UML. While existing approaches created direct mappings between Activity
Diagrams and BPEL, this thesis will provide abstractions expected to be suitable for
real-world use. Following is a list the elements defined in the Composr metamodel and
intended to be visible in a process model, accompanied by their graphical notations
chosen during the first draft.

Foundation

The Process element will be represented by the canvas on which the elements are
being placed.

The Start and End elements are shown in figure 4.6. The Start element is repre-
sented by a white circle with a black outline, while the End element uses a white circle
with a black outline and a cross rotated by 45�.

Figure 4.6.: Graphical representations of the Start and End stereotypes.

To connect two Linkable elements, the Link stereotype was introduced. Figure 4.7
show its graphical representation, a black arrow with a solid line and a solid arrowhead
at the target end of the Link.

Figure 4.7.: Graphical representations of the Link stereotype.

Basic Activities

Figure 4.8 shows, from left to right, the Receive, Reply, and Invoke elements’
graphical representations. The Receive element’s representation is a white circle
with a black outline and a black arrow with a solid line and a solid arrowhead, pointing
to the circle’s center from the upper left. The Reply element is represented by a white
circle with a black outline and a black arrow with a solid line and a solid arrowhead,
originating at the circle’s center and pointing to the lower right. Both representations

43

4. The Composr UML Profile

were chosen to imply data arriving and departing from the elements. The Invoke
stereotype was decided to be represented by the symbol for the Action node type from
Activity Diagrams — a white rectangle with rounded edges, a black outline and a label
in its center. The text “operation” is to be replaced with the name of the operation the
Invoke is referring to.

operation

Figure 4.8.: Graphical representations of the stereotypes extending BasicActivity.

Structured Activities

Figure 4.9 depicts the Loop element’s representation. It consists of two white circles
with a black outline and an arrow inside each of them, of which the left one represents
the actual Loop stereotype and the right one is the LoopClose stereotype. The arrow
in the LoopClose element’s circle has been rotated by 180� to clarify start and end of
the Loop. Both elements are connected by a solid black line for the same reason.

The arrows are not part of the symbol, but have been included to clarify the use of the
element. While the left arrow is the incoming Link and the right arrow is the outgoing
Link, the middle arrow represents an empty activity and could be replaced by other
basic or structured activities, thus allowing for arbitrary nesting levels.

Figure 4.9.: The graphical Representation of the Loop stereotype.

In figure 4.10, the If stereotype is shown on the left, while its closing element, the
IfClose, is shown on the right side. Both are white squares with a black outline, ro-
tated by 45�. Each arrow that is outgoing from the If element represents either a con-
dition — i.e., a QueryExpression of the result type QueryResultType::boolean
— or the else branch of the If. Again, as with the Loop elements, all arrows shown
were included for purely instructional reasons, and are not part of the actual symbols.

Figure 4.10.: The graphical Representation of the If stereotype.

44

4. The Composr UML Profile

The representation for the Pick element is shown on the left side in figure 4.11 along-
side its closing element, the LoopClose, which is on the right. Both symbols are black
squares rotated by 45�. Each arrow outgoing from the Loop element represents either
a ProcessOperation receivable by the Pick or a Timer that could be fired. The
arrows were included for the same reasons as in the description of the Loop element.

Figure 4.11.: The graphical Representation of the Pick stereotype.

Figure 4.12 introduces the symbols for the Flow and FlowClose elements. None of
the five arrows is part of the actual symbol, they have again been included to clarify
the usage of the element as in the description of the Loop element’s representation.
Each of the arrows between the opening and closing elements could be replaced by
arbitrarily nested activities that would then be executed in parallel by the resulting BPEL
process.

Figure 4.12.: The graphical Representation of the Flow stereotype.

4.2.2. Survey

From December 6th to December 16th 2007, a survey was conducted to assess the
relative clarity of the notation created in the preceding section. The survey asked
the participant to compare two anonymous notations A and B, where notation A was
the notation presented here and notation B was the notation used by the ActiveBPEL
Designer by ActiveEndpoints mentioned at the beginning of this chapter.

The survey was being taken by filling out forms on a web page. It set a cookie after-
wards that would disable participating more than once, thereby at least discouraging
multiple entries from the same person. The participants were primarily students of
Computer Science at the Leibniz Universität Hannover.

An english translation of the survey can be found in appendix A. Correct answers have
been added to the questions where applicable.

The questions of part 1 were asked to find out about the background of the participant,
especially if there was any knowledge that would help in understanding the diagrams

45

4. The Composr UML Profile

from parts 3 and 4. The questions of parts 3 and 4 were asked to check whether
each respective notation could be understood without prior introduction of the process
shown and without knowing the exact semantics of the notation. The number of correct
answers thus was assumed to be a measure for the comprehensibility of a notation.
The questions asked in part 4 were supposed to obtain from the participant a subjective
opinion concerning certain qualities of the presented notations.

4.2.3. Results of the Survey

19 persons participated in the survey. Table 4.1 shows the results in a condensed
form. Percentages have been rounded to the nearest integer value.

The following observations follow from this data:

• Parallel execution is depicted much clearer in the Composr notation than in the
ActiveBPEL Designer notation (questions 2.1 and 3.1).

• Except for questions 2.1 and 3.1, the ActiveBPEL Designer notation consistently
had more correct answers, implying a lack of comprehensibility for the Composr
notation. Supporting this, of all participants, about 70 % thought the Composr
notation was clearer. But 70 % also thought the ActiveBPEL Designer notation to
be more comprehensible. The Composr notation should thus trade some clarity
for better comprehensibility.

• About 25 % of the participants thought that notation A had a fine amount of
detail, while about 60 % thought it contained too little. For notation B, about 40 %
thought that it contained too much detail, while 50 % thought the detail was just
about right. This seems to imply that the Composr notation needs a little more
detail, but not as much as the ActiveBPEL Designer notation.

In the informal comments to the survey not represented here it became clear that the
Receive and Reply symbols used by the Composr notation were generally not well
understood. Also, the line connecting the Loop element with its LoopClose element
was a source of confusion. The ActiveBPEL Designer notation, however, was being
criticized for excessive use of space. Also, its symbol for a service invocation was
sometimes thought to be a repetition because of the two arrows surrounding it.

The succeeding section will use these observations to modify the notation to counter
some of its apparent downsides.

4.2.4. Final Version

This section introduces the final version of the Composr notation, addressing some of
the issues found in the preceding section.

46

4. The Composr UML Profile

Survey Results for the Composr Notation
Question Result

Part 1
Participants familiar with Activity Diagrams 79 %
Participants using Activity Diagrams at least from
time to time

32 %

Participants familiar with BPEL 53 %
Participants assuming to understand BPEL syntax 39 %

Part 2
Correct answers for Question 2.1 89 %
Correct answers for Question 2.2 63 %
Correct answers for Question 2.3 37 %
Correct answers for Question 2.4 84 %
Correct answers for Question 2.5 79 %
Correct answers for Question 2.6 74 %
Correct answers for part A overall 71 %

Part 3
Correct answers for Question 3.1 74 %
Correct answers for Question 3.2 63 %
Correct answers for Question 3.3 79 %
Correct answers for Question 3.4 89 %
Correct answers for Question 3.5 89 %
Correct answers for Question 3.6 79 %
Correct answers for part B overall 79 %

Part 4
Thought notation A / B was more comprehensible 32 % / 68 %
Thought notation A / notation B was clearer 74 % / 26 %
Thought notation A contained too much / about right
/ too little details

16 % / 26 % / 58 %

Thought notation B contained too much / about right
/ too little details

37 % / 53 % / 10 %

Table 4.1.: Survey Results for the Composr Notation

As the percentage of survey participants who knew UML’s Activity Diagrams was rel-
atively high (79 %), it is assumed that bringing the notation more in line with similar
elements known from Activity Diagrams will improve comprehensibility of the notation.

Also, a main difference between the Composr notation and the notation of the Ac-
tiveBPEL Designer is the strikingly complementary text use: while the former uses
almost no text at all, the latter allows annotation of virtually every graphical element. It
is believed that this is also an area in which the Composr notation should be improved.

The Composr notation will thus be modified as follows:

• The representation of the Start stereotype will be replaced with the represen-

47

4. The Composr UML Profile

tation of the InitialNode node type of Activity Diagrams.

• The representation of the End stereotype will be replaced with the representation
of the ActivityFinal node type of Activity Diagrams.

• The representation of the Reply stereotype will be replaced with the represen-
tation of the SendSignalAction node type of Activity Diagrams.

• The representation of the Receive stereotype will be replaced with the repre-
sentation of the AcceptEventAction node type of Activity Diagrams.

• The black line connecting the Loop stereotype with its LoopEnd will be re-
moved to bring it more in line with the other stereotypes inheriting from the
StructuredActivity stereotype.

• The Pick and If stereotypes’ outgoing Links will be annotatable using text
strings. Since these labels will not bear any semantics relevant to the metamodel
whatsoever, they will only be introduced in the notation, while the metamodel will
stay untouched.

Expansion regions from UML’s Activity Diagrams have been considered as a notation
for the Loop element, as its semantics allow for the execution of an action for each
item in a list. In the end this was found to be more confusing, though, as it would
have permitted the Loop element for a use similar to the “for each” construct of the
Java language, but would have complicated loops based on counters or plain boolean
expressions. An abstraction similar to the mentioned “for each” construct could be
introduced in a future revision of the notation.

Figure 4.13 shows the modified Start and End representations. The Start element,
situated on the left side, now is a black circle, while the End element on the right side
is a black circle inside a white circle with a black outline.

Figure 4.13.: Updated graphical representations of the Start and End stereotypes.

Figure 4.14 shows the modified Receive and Reply representations in context with
the unmodified Invoke representation. The Receive element, which is shown on the
left, is now made up of white rectangle with a black outline and a single concavity on its
left side. The Reply element also is a white rectangle with a black outline, but features
a single convexity on its right site.

operationreplyreceive

Figure 4.14.: Updated graphical representations of the Receive and Reply stereo-
types.

48

4. The Composr UML Profile

Figure 4.15 shows the updated Loop and LoopClose representations, in which the
black line formerly connection both has been removed.

Figure 4.15.: Updated graphical representation of the Loop and LoopClose stereo-
types.

Figure 4.16 shows the Pick and PickClose representations in context with their
updated Links, which may now feature a textual label.

300s

ok

error

Figure 4.16.: Updated graphical representation of the Links of the Pick and
PickClose stereotypes.

Figure 4.17 shows the If and IfClose representations together with their Links that
have also been updated to permit textual labels.

else

sunny

rainy

Figure 4.17.: Updated graphical representation of the If and IfClose stereotypes.

The addition of labels to the Links of the Pick / PickClose and If / IfClose pairs
allows the modeler to informally annotate the Links, while leaving the exact XPath
expressions to the developer configuring the process.

Table B.1 in appendix B shows all elements of the final version of the Composr notation,
listing the available graphical representations and their respective stereotypes.

49

5. Development

This chapter describes the development of a prototype of the Composr application,
covering design and implementation for the generator and the GUI.

5.1. Development Process

As described by [9], when developing a model-driven solution, there are several advan-
tages in beginning the project with a reference implementation, and then developing
the models and transformations that are supposed to generate the given reference.
This process can be iterated, each time extending the reference implementation and
adjusting the models and transformations. Each iteration aims at reaching a state in
which the artifacts generated from the models again align with the reference imple-
mentation.

This thesis attempted to pursue the described development process. But due to sev-
eral technological challenges that often hindered development significantly, this could
not be achieved practically: Over the course of the thesis, not a single complete itera-
tion was completed. There is a reference implementation, though, which has gradually
been approximated by its generating model and the developed transformations, and
at the end of the thesis was nearly generated completely. The reference implementa-
tion consists of a BPEL process, a commodity service it invokes, as well the the XML
Schema definitions and WSDL descriptions required by both.

The process model that was used as input for the transformations is shown in figure
5.1, using the notation developed in chapter 4. The process receives a Person object,
uses the PersistenceService to store it, and then returns the now persisted object
it retrieved from the service.

To achieve the generator’s degree of completeness that will be presented in this chap-
ter, the priority of the GUI had to be lowered. The user interface is therefore incomplete
as well. To proceed with the development of the generator despite the lack of a fully
functional GUI, the model shown in figure 5.1 was reconstructed in Java code as a
graph of objects. It exhibits the same structure as the model that would have been
passed from the graphical editor. Therefore, the process model was suitable for tests
of the generator, and alignment of the generated artifacts could be confirmed success-
fully for most reference artifacts.

As the generation of the XML could not be controlled completely, some aspects of the
reference were modified to better match the format of the generated XML documents,
so equality could be confirmed in code much easier. The changes that were made

50

5. Development

createPerson

returnPerson

Person.save

Figure 5.1.: The model used for developing the transformations, shown in the Composr
notation.

were completely syntactical and did not change any of the semantics of the docu-
ments, so the actual requirements inherent in the reference implementation remained
factually unchanged. Examples for modification are element and attribute ordering and
distribution of whitespace. Thus, once a generated artifact was aligned with the up-
dated reference artifacts, a successful test would be available that could still be used
to constantly verify the continued correctness of the transformations.

5.2. Generator Design

Before the generator could be designed, some aspects had to be clarified: the tech-
nologies to be used, the dependencies between the artifacts, and the integration of the
generator with the graphical tool. This section explains which decisions were made
regarding these questions and provides the reasoning leading to the decisions. After-
wards, the section will explain the actually implemented architecture of the generator.

5.2.1. Technology

Several kinds of artifacts need to be created or modified by the generator. Primarily,
these were XML Schema definitions, WSDL descriptions, BPEL code, and a service
implementation in Java. Except for the Java code, all of these were generated by using
a library providing an object model of the respective XML language. The Java code
and some simple changes in build scripts or configuration files were generated using
simple string manipulation in Java, as the low quantity of the work to be done in these
formats would not have justified more elaborate approaches.

The following paragraphs will be concerned with primarily XML-related technology re-
quired for the generation of BPEL processes and the interfaces of the generated ser-
vices.

To generate XML Schema definitions, the object model provided by the XML Schema

51

5. Development

Infoset Model1 of the Eclipse project was chosen, as it was the most complete object
model available. Another option was the XMLSchema2 provided by the Apache Soft-
ware Foundation, but some central requirements could not be met as easily as with
the one provided by Eclipse.

For WSDL, a formal specification exists that defines an object model as well as a
WSDL writer and a reader: JWSDL3 from the Java Community Process. The im-
plementation used was also its reference implementation, WSDL4J4, which has been
developed by IBM. As the JWSDL has existed for a significant amount of time, devel-
opment in the area of WSDL object models seems to have settled, so no other viable
option was found.

To generate the BPEL code, the object model included in the Eclipse BPEL Project5

was chosen. The project covers much more, as it even provides a graphical designer.
Only the object model was needed for this thesis though, so it was extracted from
the project. Since the BPEL Project is still in active development and remains slightly
immature, Java archives of the object model were built from the sources provided and
updated regularly. Companies such as IBM, Intel, and Oracle are actively contributing
to the Eclipse BPEL Project, so sufficient progress is expected to be sustained for
some time. Other BPEL models showed to rely on a lot more dependencies on other
libraries and were therefore denied.

The next paragraphs will discuss technologies primarily required for the implemen-
tation of the commodity service concept. Since this thesis will provide only a single
implemented commodity service, the technologies will in part be related to its special
requirements. This commodity service is the PersistenceService, providing operations
that enable the persistence of the data objects used in the process.

Many solutions for persistence in Java exist, supporting diverse concepts. To allow
for the object-oriented modeling of the data model used by a process, a persistence
framework facilitating the use of simple Java beans as data model classes was sought
after. The final decision was made in favor of the Java Persistence API (JPA), which
is a part of the EJB 3 specification6, and for which Hibernate provides an implemen-
tation. This permits the use of a standardized API and the unobtrusive annotation of
model classes to turn them into persistable entities. Hibernate was chosen as an im-
plementation as it is a proven solution that has already been widely used. Also, prior
experience with the framework was available.

To be able to expose the implementation of the PersistenceService as a Web Service,
a Web Services engine had to be chosen. A requirement for this was to allow for
the generation of a service skeleton based on the generated WSDL description of
the service, so the implementations for the services’ operations could be included

1http://eclipse.org/xsd/
2http://ws.apache.org/commons/XmlSchema/
3http://jcp.org/en/jsr/detail?id=110
4http://sourceforge.net/projects/wsdl4j
5http://www.eclipse.org/bpel/
6http://jcp.org/en/jsr/detail?id=220

52

http://eclipse.org/xsd/
http://ws.apache.org/commons/XmlSchema/
http://jcp.org/en/jsr/detail?id=110
http://sourceforge.net/projects/wsdl4j
http://www.eclipse.org/bpel/
http://jcp.org/en/jsr/detail?id=220

5. Development

as effortlessly as possible. After the exploration of both Apache Axis27 and Metro8

from the GlassFish project, Axis2 was chosen based on features and usability of the
respective approaches. The decision was also supported by a comparison of several
Web Service stacks9.

For the transmission of instances of the data model classes via XML messages over
the network, a method for marshalling and unmarshalling the Java objects needed to
be decided upon. Axis2 supports several approaches. A short description and the
reasoning for or against each method is provided in the list below.

• Selecting none of the provided XML binding libraries will not create any data
model classes. Instead, the OMElement class of AXIOM, the Axis Object Model,
is used as a fallback. Such a service interface would be hard to use and maintain,
as every data type would be representing only by a nested tree of OMElements.
So it was decided against this option.

• XMLBeans10, part of the Apache XML Project, is unsuitable for use in conjunction
with Hibernate, which requires all data model classes to have a default construc-
tor without any arguments. As this is not offered in XMLBeans, it could not be
used.

• JAXB11, the Java Architecture for XML Binding, is allegedly supported, but in an
experimental, undocumented state. Therefore, it was not chosen.

• ADB, the Axis2 Databinding Framework, is a simple schema compiler and Java
generator integrated into Axis2. It was not chosen because the Java beans it
creates contain much infrastructure code that would be hard to maintain manually
should the need arise.

• JiBX12, which injects its infrastructure code only into the compiled class files,
generates completely clean source code for the Java beans of the required types.
Due to its consequently low constraints on the usage of the generated beans, it
is the solution chosen for this thesis. Another benefit is the availability of the
Xsd2Jibx tool13, which creates the Java beans from a given XML Schema def-
inition. The central concepts of JiBX will be explained in more detail in section
5.3.3.

5.2.2. Artifact Dependencies

In order to generate all needed artifacts, generation was first divided into stages, each
corresponding to a particular class of artifact. As there are several dependencies

7http://ws.apache.org/axis2/
8https://metro.dev.java.net/
9http://wiki.apache.org/ws/StackComparison; last access: 2007-12-17

10http://xmlbeans.apache.org/
11https://jaxb.dev.java.net/
12http://jibx.sourceforge.net/
13http://jibx.sourceforge.net/xsd2jibx/

53

http://ws.apache.org/axis2/
https://metro.dev.java.net/
http://wiki.apache.org/ws/StackComparison
http://xmlbeans.apache.org/
https://jaxb.dev.java.net/
http://jibx.sourceforge.net/
http://jibx.sourceforge.net/xsd2jibx/

5. Development

between the artifact classes, a dependency graph was created. That dependency is
shown in figure 5.2, illustrating the order of generation it implies. To preserve clarity,
dependencies of a class covered by another dependency have been omitted from the
diagram.

Dependency Graph

Model
Types 1

Service-
Interfaces 2

Process-
Interface

5

Service
Implementations

3

Process
6

Meta-Artifacts
7

Service-
Archiving 4

Process-
Archiving

8

Legend

depends on

order of generation

Class of
Artifacts

Figure 5.2.: The dependency graph used to model the dependencies between artifact
classes.

(1) As can be seen from figure 5.2, the model types have no dependencies at all,
they can be generated only using the modeled process. In the class of technologies
used in this thesis, this corresponds to the generation of an XML Schema definition for
the model types used in the process.

(2) The service interfaces are required by both the service implementations as well
as the process interface which must declare the services it uses. This results in the
WSDL descriptions of the commodity services being generated next.

Generation can now proceed on either of the two branches of the dependency graph.
This thesis continues with the right side, which is concerned with the services, while
the left side is about the process. This choice is arbitrary.

54

5. Development

(3) The service implementations are dependent on the presence of their interfaces
as well as the model types and may be generated next. In this case, the skeleton
classes for the service are combined with the Java implementations of the operations
defined by each commodity service.

(4) To be able to archive the generated services, all of their three components must
already exist: the implementation, the interface, and the definition of the model types
used by the service. The concrete result is an Axis2 archive (AAR) that can be de-
ployed in the servlet provided by Axis2.

The following artifact classes all concern the process side of generation.

(5) The process interface, a WSDL description of the operations and messages used
by the process, can be generated next. It requires the presence of both the model type
definitions and the service interface descriptions, as it references them both.

(6) The actual process, in this case the concrete BPEL code, can only be generated
if the process interface, the service interfaces, and the model type definitions are in
place.

(7) As the meta artifacts are basically references to the files created earlier, all those
are required to exist. These artifacts help the process engine to find everything that is
references by a process. As this thesis targets the ActiveBPEL Engine, a catalog of
WSDL and XML Schema files as well as a deployment descriptor for the process are
included herein.

(8) Finally, the process, along with its interface, the service interfaces it uses and
the model type definitions it needs, can be merged into a process archive. For the
ActiveBPEL Engine, the format for the archive is BPR. The resulting file can then be
deployed into the engine.

5.2.3. Integration with the GUI

In an exploration phase prior to actual design and development, the exchange format
of the process between the graphical user interface and the generator was examined.
It was found out that the GUI can provide a Java object graph representing the created
process model. When the user activated generation of the process, the GUI would
simply pass the Java object containing the process on to the generator without using
any intermediary format.

55

5. Development

To permit this, both the user interface and the generator were developed to use the
same classes to represent the process model, this common set of classes would then
be the connection between GUI and generator. Therefore, for each stereotype from
the UML profile defined in chapter 4, a Java class was created. As the framework used
by the GUI follows strict rules based on the Model-View-Controller design pattern, the
model classes only include model-specific behaviour.

5.2.4. Architecture of the Generator

To allow interested parties to develop their own replacements of the generator shown
in this thesis, an interface for a generation strategy was created according to the Strat-
egy design pattern. The methods required by this interface were then called in the
actual generator class, according to the Template Method design pattern. The meth-
ods declared by the interface GenerationStrategy are shown below. All of them
are public and have a void return type. They correspond to the generation phases
introduced in section 5.2.2.

• generateTypes()

• generateServiceInterfaces()

• generateServiceImplementations()

• archiveServices()

• generateProcessInterface()

• generateProcess()

• generateMetaArtifacts()

• archiveProcess()

The concrete class implementing the GenerationStrategy interface is the BpelGenera-
tionStrategy. As it might be desirable to replace only one particular technology used in
the generation, the BpelGenerationStrategy was divided into smaller generators, each
responsible for its own class of artifacts. Interested parties could thus replace the Xs-
dTypeGenerator with a RelaxNgTypeGenerator to supply schema definitions using the
RelaxNG14 schema language or replace the BpelProcessGenerator with a YawlPro-
cessGenerator to support the YAWL15 workflow language.

The interchangeability of the MetaArtifactsGenerator is especially interesting, as it cur-
rently provides the meta artifacts necessary for the BPEL process to run in the Ac-
tiveBPEL Engine. Other engines will most likely require different meta artifacts, which
can be implemented by replacing the MetaArtifactsGenerator with another generator.
14http://relaxng.org/
15http://yawlfoundation.org/

56

http://relaxng.org/
http://yawlfoundation.org/

5. Development

To allow for the addition of new commodity services, the CommodityService interface
was introduced, providing sufficient information for the generator to create a service
from it. Concrete commodity services need to implement the interface themselves and
provide the class name of the implementation to the graphical editor. Invoke elements
can then be configured to use the new service, and its class name can be used by the
GUI to inspect it — to find out about the operations supported and their respective
input and output types. The generator can create instances of a concrete Commod-
ityService using reflection, thereby gaining access to all details that are required to
generate the service and invoke it in the BPEL process.

The Type stereotype described in the UML profile created in chapter 4 was mapped
to the Java interface CpsrType. To permit the distinction between simple and com-
plex types, there are two implementations of the interface: CpsrSimpleType and
CpsrComplexType. These classes are used to represent the data types used in the
process. They are being created by the user — e.g., to set the type of a Receive
element — and are used by the generator to create XML Schema and Java beans rep-
resenting the data model of the process. As a single type might be used multiple times
in the same process, a public String getSignature() method was added. It
generates a string that is identical for two types if they contain the same sub-types.
Overloading the equals method of the type classes therefore permits the usage of a
simple java.util.Set to resolve duplicate types to a single objects, which is required for
artifact generation.

5.3. Generator Workflow and Artifacts

For each class of artifact, this section provides a description of how that particular ar-
tifact is being generated. The classes of artifacts have been described in section 5.2.2
before. The specified algorithms all use pseudo-code for clarity and assume the exis-
tence of several low-level algorithms that would not be of any interest in understanding
the generation’s concept.

5.3.1. XML Schema

The XML Schema object model from the Eclipse Modeling Project is used to create

1. an XML Schema definition for the data model types used by the services and the
process,

2. for each service, an XML Schema definition defining the wrapper types for the
messages the service uses, and

3. for the process, an XML Schema definition defining the wrapper types for mes-
sages the process uses.

57

5. Development

(1) Algorithm 1 describes the strategy used to generate an XML Schema definition
containing all the data model types used within the process. It inserts all types used
in the Receive, Reply, and Invoke elements into a set, resolving duplicated as has
been described in the preceding section. For each of the types found, it then creates
an XML Schema representation.

Algorithm 1 XML Schema generation for data model types
Set types = new Set()
for all activity in process.getBasicActivities() do

if activity instanceof Receive then
types.add(activity.getProcessOperation().getParameters())

5: else if activity instanceof Reply then
types.add(activity.getProcessOperation().getResults())

else if activity instanceof Invoke then
types.add(activity.getServiceOperation().getParameters())
types.add(activity.getServiceOperation().getResults())

10: end if
end for
for all type in types do

schema.addComplexTypeDefinitionForType(type)
end for

(2) Algorithm 2 shows how the XML Schema elements for the messages of the in-
voked services are being generated, effectively creating the basis for a service inter-
face that conforms to the “wrapped” variation described in section 2.2.1. A simplified
example for the message types used by the save operation of the PersistenceService
bound to the Person type is shown in listing 5.1. A full version is shown in listing C.2
in appendix C.

1 <schema
2 targetNamespace="http://composr/tns/PersonPersistenceService">
3 <element name="save">
4 <complexType>
5 <sequence>
6 <element name="person" type="Q1:Person" / >
7 < / sequence>
8 < / complexType>
9 < / element>

10 <element name="saveResponse">
11 <complexType>
12 <sequence>
13 <element name="person" type="Q1:Person" / >
14 < / sequence>
15 < / complexType>
16 < / element>
17 < / schema>

Listing 5.1: The XML Schema elements used in the messages of a PersistenceService
bound to a Person type.

58

5. Development

Algorithm 2 XML Schema generation for the service interfaces
for all invoke in process.getInvokeActivities() do

for all operation in invoke.getService().getOperations() do
XMLSchemaElement requestElement
requestElement.setName(operation.getName())

5: for all type in operation.getParameters() do
requestElement.addElementForType(type)

end for
schema.addElement(requestElement)
XMLSchemaElement responseElement

10: responseElement.setName(operation.getName() + “Response”)
for all type in operation.getResults() do

responseElement.addElementForType(type)
end for
schema.addElement(responseElement)

15: end for
end for

(3) The XML Schema elements for the messages used by the operations of the pro-
cess are generated very similar to what has been shown in algorithm 2. As these
definitions do not reside in their own file, but are generated into the types element of
the WSDL file of the process, their generation is part of the description of the genera-
tion of the process interface in the succeeding section.

5.3.2. Web Services Description Language

Two different kinds of WSDL files need to be generated: those describing the com-
modity services used in the process (1), and the WSDL description for the process
itself (2). The WSDL descriptions of existing service are merely being copied.

(1) Algorithm 3 shows the basic strategy for the generation of the WSDL files for
the commodity services invoked in the process. For each invoked commodity service,
the XML Schema definitions containing the service’s messages and those for the data
model types are first being imported. A single PortType is added to the WSDL, and to
the PortType, for each operation of the service a WSDL operation and a binding are
being added. The WSDL operations use the XML Schema definitions for the message
types described in the preceding section. In appendix C, the WSDL description gener-
ated for the PersistenceService bound to a Person type can be found in listing C.1. As
can be seen, it uses the “wrapped” variation described in section 2.2.1 and supported
by the XML Schema definitions shown in listing 5.1.

59

5. Development

Algorithm 3 WSDL generation for the services
for all invoke in process.getCommodityInvokeActivities() do

wsdl.importMessageElements(invoke)
wsdl.importModelTypes(process)
PortType pt = new PortType()

5: for all operation in invoke.getService().getOperations() do
WsdlOperation wsdlOperation = new WsdlOperation()
WsdlMessage messageIn = new WsdlMessage()
messageIn.setElement(getXsdElementForOperationInput(operation))
wsdlOperation.setInputMessage(messageIn)

10: WsdlMessage messageOut = new WsdlMessage()
messageOut.setElement(getXsdElementForOperationOutput(operation))
wsdlOperation.setOutputMessage(messageOut)
pt.addOperation(wsdlOperation)
wsdl.addBindingForOperation(operation)

15: end for
wsdl.addPortType(pt)

end for

(2) The generation of the WSDL description for the process is being outlined in al-
gorithm 4. The XML Schema inside the types element of the WSDL first imports the
WSDL descriptions of all invoked services, and then defines the message types to be
used by the process’s messages. For this, the generator queries the Receive and
Reply elements for the parameters and results of the ProcessOperation implied
by each Receive element. As multiple Reply elements with different return types
may be related to the same Receive element, these different return types are joined
into a new complex type.

Then, similar to the WSDL generation for the commodity services described above,
a single port type is added to the WSDL, containing the operations of the process. The
messages of these operations use the message types defined in the schema before.
To create the PartnerLinkTypes for the process, first a set is created containing all
distinct services that are invoked by the process. Finally, a PartnerLinkType referencing
only the process is added to the WSDL description. The PartnerLinkTypes generated
for the process model used during development are shown in listing 5.2 as an excerpt
of the WSDL file for the process. Listing C.3 in appendix C shows the full WSDL
description that was generated.

1 <par tnerL inkType name="Process01PLT">
2 < r o l e name="Process01Role" portType="Process01PortType" / >
3 < / par tnerL inkType>
4 <par tnerL inkType name="PersonPersistenceServicePortTypePLT">
5 < r o l e name="Process01Role" portType="Process01PortType" / >
6 < r o l e name="PersonPersistenceServicePortTypeRole" portType="

PersonPersistenceServicePortType" / >
7 < / par tnerL inkType>

60

5. Development

Listing 5.2: The PartnerLinkTypes generated for the process model used during
development.

Algorithm 4 WSDL generation for the services
wsdl.setTypes(new Schema())
for all invoke in process.getCommodityInvokeActivities() do

wsdl.getSchema().addImport(invoke.getService())
end for

5: for all receive in process.getProcessOperations() do
wsdl.getSchema().addMessageTypeForReceive(receive)
wsdl.getSchema().addCombinedMessageTypeForReplies(receive.getReplies())

end for
PortType pt = new PortType()

10: wsdl.addPortType(pt)
for all receive in process.getProcessOperations() do

WsdlOperation wsdlOperation = receive.createWsdlOperation()
pt.addOperation(wsdlOperation)

end for
15: Set invokedServices

for all invoke in process.getCommodityInvokeActivities() do
invokedServices.add(invoke.getService())

end for
for all service in invokedServices do

20: wsdl.addPartnerLinkType(process, service)
end for
wsdl.addPartnerLinkType(process, null)

5.3.3. Commodity Services

As was outlined in section 5.2.4, the generator uses the CommodityService interface
common to all commodity services to generate all required artifacts. As the gener-
ation of XML Schema definitions and WSDL descriptions has already been covered
in sections 5.3.1 and 5.3.2, this section describes how the information provided by
the CommodityService interface is used to generate the actual implementations for
the commodity services. Algorithm 5 outlines the general approach to service gen-
eration, implemented in the generateServiceImplementations method of the
BpelGenerationStrategy.

For each invocation of a commodity service, algorithm 5 creates an instance of that
commodity service and parameterizes it with the input and output types configured in
the Invoke element the service is referenced from. This way a commodity service
instance can specialize itself: e.g., the PersistenceService creates different services
depending on the data type that is being passed to it — passing a Person, e.g., would

61

5. Development

create a PersonPersistenceService. For this service instance, the Xsd2Jibx tool then
generates a binding file, mapping the service’s message types and the data model
types to Java classes. The Wsdl2Java tool of Axis2 is then being used to generate an
Ant build file and all Java classes required for an Axis2 service. Also, a skeleton class
containing the service’s declared methods will be generated, albeit with empty method
bodies.

Algorithm 5 Generation of the implementations of the commodity services
for all invoke in process.getCommodityInvokeActivities() do

Service service = Reflection.instantiate(invoke.getService().getClassName())
service.setInputTypes(invoke.getServiceOperation().getParameters())
service.setOutputTypes(invoke.getServiceOperation().getResults())

5: File binding = Xsd2Jibx.createBinding(service)
File[] serviceFiles = Wsdl2Java.generateServiceClasses(service, binding)
File skeletonClass = serviceFiles.getImplementationSkeleton()
for all operationName in skeletonClass.getOperationNames() do

skeletonClass.inject(service.getImplementation(operationName))
10: end for

for all library in service.getLibraries() do
library.copyTo(serviceFiles.getLibDirectory())

end for
service.processModelClasses(serviceFiles.getModelClasses())

15: for all file in service.getMetaFilenames() do
file.create()
file.setContent(service.getMetaContent(file))

end for
File buildFile = serviceFiles.getBuildFile()

20: buildFile.injectTarget("jibx.bind")
buildFile.runTarget("jibx.bind")

end for

For each operation name found in the skeleton class, the generator queries the service
instance for its implementation and injects it into the class. Then, all libraries and
files for the META-INF directory required by the service are being copied into their
correct places. Finally, the build file generated by Wsdl2Java is modified to include
an additional build target to compile all classes and inject the JiBX modifications into
the bytecode. That build file is then executed, which concludes the generation of the
service.

The archiveServices method of the BpelGenerationStrategy simply executes
the Ant task that the Axis2 build file provides for archiving. This creates an AAR file,
readily deployable into the Axis2 servlet.

62

5. Development

The Persistence Service

The Persistence Service is a commodity service that will allow the process modeler to
easily persist data used in the process. To achieve this, it provides the save operation,
which can be passed any type. Depending on the passed type, a specialized service
will be generated, named after the type. E.g., passing a Person to the Persistence
Service would result in the generation of a PersonPersistenceService that is invoked
from the process. Other operations to retrieve, update, and delete data are of course
also imaginable, but have not been implemented in this thesis.

The save operation takes an “anytype” from the XML Schema recommendation16

and returns the data that was passed along with an automatically generated id. The
database configuration to be used can be retrieved by the service using the Invoke
element’s options association, which must have been set by the user in the configu-
ration dialog.

The reference implementation for the Persistence Service uses Hibernate for persis-
tence. The resulting commodity service therefore executes the following modifications
on the generated service.

• Copy the Hibernate and JPA libraries to the service’s library directory.

• Annotate the classes of the data model with @Entity and @Id.

• Create a persistence.xml file in the service’s META-INF directory for config-
uration.

• Inject the operation implementations into the method bodies of the skeleton
class.

5.3.4. Business Process Execution Language

The BPEL implementation of the business process given by the process model is gen-
erated according to algorithm 6, which sets up the BPEL process. It does not add
the actual activities modeled in the process, which is done in the addSuccessors
method. It is initially called from algorithm 6, but then recursively calls itself until all
model elements have been added to the BPEL process.

Algorithm 6 begins by importing into the BPEL process the WSDL description of the
process itself as well as those of the invoked services. For all PartnerLinkTypes defined
in the process WSDL, the generator adds a PartnerLink to the process. It creates an
empty <variables> element and sets an empty <flow> as the process’s activity.
Then, it calls the addSuccessors method, which will recursively walk the process
graph to add all elements in the process model to the BPEL process.

The addSuccessors method takes as its input a collection of model elements, a flow
element that these elements are contained it, and a link element. The link element is
16http://www.w3.org/TR/xmlschema-0/#anyType

63

http://www.w3.org/TR/xmlschema-0/##anyType

5. Development

Algorithm 6 The algorithm used for BPEL generation
WsdlFile processWsdl = process.getWsdl()
bpel.addImport(processWsdl)
for all invoke in process.getInvokeActivities() do

bpel.addImport(invoke.getService().getWsdl())
5: end for

for all partnerLinkType in processWsdl.getPartnerLinkTypes do
PartnerLink pl = new PartnerLink()
pl.setType(partnerLinkType)
pl.setMyRole(partnerLinkType.getProcessRole())

10: pl.setPartnerRole(partnerLinkType.getServiceRole())
bpel.addPartnerLink(pl)

end for
bpel.setVariables(new Variables())
Flow rootFlow = new Flow()

15: bpel.setActivity(rootFlow)
addSuccessors(process.getStart().getTargetElements(), rootFlow, null)

required to connect the source element of the passed model elements to each of its
successors.

For each model element, the method will add its corresponding BPEL elements to the
process, and then call itself recursively, passing as model elements the successors of
the current element.

Each kind of model element needs to be treated differently. Implementations exist for
the Receive, Invoke, and Reply elements, but are incomplete — their <assign>
elements are not generated correctly yet.

Listing C.5 in appendix C shows the BPEL generated from the model used during
development. The generation of the deployment artifacts and the archiving of the
process could not be implemented in the time frame set for this thesis.

5.4. Graphical User Interface

As explained in section 5.1, the priority for the GUI was lowered in favor of a more com-
plete generator. Therefore, this section presents only a portion of what was planned
for the tool. It first shows some sketches of the interface envisioned for the full tool, and
then shows how the graphical editor was implemented, leaving out the configuration
dialogs from the sketches.

64

5. Development

5.4.1. Sketches

This section presents some sketches for user interface dialogs related to the dialogs
discussed in section 3.3. Even though they could not be integrated into the final soft-
ware, they are believed to give valuable clues to the envisioned workflow.

Types Editor

Figure 5.3 shows the Types Editor while being used to edit the custom “Address” data
type. On the left side, a selection box of all available types is being shown. These
include the built-in types from the XML Schema recommendation, types that were
imported from services that are used in the process, as well as custom types created
by the user. On the right hand side, the name and the properties of the data type can
be edited.

Types Editor

Built-in Types
integer
double
string
Types from Services
de.u...se.pws.Person
de.u...se.pws.Subject
de.u...se.pws.Thesis
Custom Types
Person
User
Address
Create new Type
Address

Properties: string >
string >

street
city

com.se...Country > country

Type Name
X
X
X

Add Property

AddressName: Delete Type

Figure 5.3.: A sketch for the Types Editor, currently being used to edit the custom “Ad-
dress” data type.

Data Mapper

Figure 5.4 presents the Settings dialog for the Invoke element. Currently, an invo-
cation of an Email service is being configured: an operation has been chosen and
parameters are just being populated with values to be passed. While the two bottom
parameters have already been filled with literal values, the “person” parameter is still
undefined. As the user clicks the box missing a value, the Data Mapper dialog is being
shown.

The Data Mapper is depicted in figure 5.5. Having opened from the Settings dialog
shown in figure 5.4, it is being used to choose values for the “de.uni-hann.Person” type
required by the Email service. This target type is shown on the left, while the data for

65

5. Development

Settings for Service Invocation

sendMessageOperation:

Service: Email >

OKCancel

Parameters: <undefined>
"Important Matters"
"Hello, how are ..."

person (de.uni-h...Person)
subject (xsd:string)
message (xsd:string)

Figure 5.4.: A sketch for the Settings dialog of the Invoke element, being used to
configure the invocation of an Email service.

the parameters of the service can be chosen on the right side. Here, for each receive
and each invoke preceding the invocation currently being configured, are shown with
their respective result types. In the sketch, the user chooses the “nameFirst” attribute
from a prior receive element and drags it onto the “firstName” attribute of the target
type. This is being repeated for each attribute of the target type.

Because the user regularly needs this exact mapping between the different Person
types, he uses the “OK Save” button to not only apply the mapping to the service
invocation, but to also save the mapping as a template. Should the user later encounter
the same target type and source types again, the tool would propose to apply the saved
mapping.

Data Mapper

Target Type
de.uni-hann...pws.Person

+ Person
 age
 emailAddress
 firstName
 lastName

Available Values

+ received Person (com....Person)
 nameFirst
 nameLast
 email
+ invoked WeatherService
+ invoked StockTickerLookup

firstName
nameFirst

Edit literally Cancel OK

OK & Save

Mappings ...

Figure 5.5.: A sketch for the Data Mapper, shown while choosing a mapping to the
target “de.uni-hann.Person” type on the left.

66

5. Development

5.4.2. Implementation

ProFlow is a framework for developing Eclipse plug-ins that employ a graphical editor
for the creation of graph models. It was developed at the Software Engineering group
of Leibniz Universität Hannover and was used as the basis for the GUI of the Composr
application.

To graphically represent the model elements on its canvas, ProFlow requires a model
class and a view class for each element. These were implemented for several of the
elements present in the UML profile introduced in chapter 4. This resulted in an Eclipse
plug-in that is able to create diagrams using the defined notation.

In order to implement the dialogs presented in the preceding chapter, it was planned
to use the JFace framework included in Eclipse. As has been mentioned before, this
was abandoned.

67

6. A real-world Example

To assess the value of the approach presented in this thesis, this chapter presents
a process implemented during the student project “Entwicklung einer Webservice-
basierten Anwendung” (“Development of a Web Service-based Application”) at the
Leibniz Universität Hannover during the winter term of 2006.

The process and the implementation by the students as well as the same process
modeled using the Composr notation will be introduced in the following section. Later
sections define metrics on aspects of the development of service compositions and,
based on the example process, are being evaluated in context of this thesis.

6.1. The Thesis Process

The implemented process was a real-world process used at the Software Engineering
Group of Leibniz Universität Hannover. It describes the activities necessary to write a
thesis at said group. Below is a textual description of the process.

1. A tutor proposes a subject for a thesis.

2. The examiner, usually the professor, either accepts or rejects the subject.

a) If the subject is rejected, the tutor can make adjustments to the thesis and
have it reviewed by the examiner again.

3. Once the subject is approved, it is published, so students can apply for it. Also,
a second examiner is chosen.

4. Once a student and a second examiner have been found, the thesis is registered
with the university to officially start it.

5. A thesis can be written externally, i.e., not at the university, but at another orga-
nization.

a) If the thesis is external, the introductory presentation is planned.

6. Then, the intermediate and final presentations are planned.

7. Once the thesis has been delivered, both examiners give it a grade.

68

6. A real-world Example

6.1.1. Student Implementation

The process implemented by the students consisted of a collection of BPEL processes
and several Web Services. The BPEL processes were organized hierarchically with
a main process that would call sub-processes. Also, a client application to access
the main BPEL process was created. For the BPEL development, the ActiveBPEL
Designer by ActiveEndpoints was used, which has been mentioned before. The Web
Services were implemented in Java using Hibernate1 for persistence and used Apache
Axis2 as their Web Services engine.

Tables 6.1 and 6.2 present data retrieved from the student project, showing the num-
bers for lines of code, classes, and methods for several software components involved
— all concerning the Java code created during the project. The data was gathered
using the Metrics plug-in for Eclipse3.

Table 6.1.: Data collected for the Student Project (Lines of Code)
SW Component Lines of Code

generated manual total generated

Persistence WS 1221 394 1615 75.60%
Print WS 0 314 314 0.00%
Mail WS 0 309 309 0.00%
Auth. WS 0 434 434 0.00%
Client 5544 11496 17040 32.54%

Total 6765 12947 19712 21.63%

Table 6.2.: Data collected for the Student Project (Classes and Methods)
SW Component Classes Methods

total total per class

Persistence WS 7 147 21.00
Print WS 3 7 2.33
Mail WS 4 38 9.50
Auth. WS 8 15 1.88
Client 222 1592 28.78

Total 244 1799 12.70

For illustration and comparison, figure 6.1 shows the main process developed during
the student project in ActiveBPEL Designer. Since the unscaled image takes about
3500 x 8800 pixels of space, the figure depicts a scaled-down version of the complete

1http://hibernate.org
2http://ws.apache.org/axis/
3http://metrics.sourceforge.net/

69

http://hibernate.org
http://ws.apache.org/axis/
http://metrics.sourceforge.net/

6. A real-world Example

main process on the left and an unscaled portion of the process to the right. In the
middle, a part of the process is presented using a medium scale. The arrows indicate
the approximate place the area right of each arrow is situated in the respective larger-
scale depiction. The sub-processes used by this process are not shown.

Figure 6.1.: The BPEL process developed in the student project in three different
scales.

6.1.2. Composr Model

Figure 6.2 presents the same process modeled using the Composr notation, also
scaled down a bit. Viewed on a computer screen in a scale appropriate for editing,
it would occupy about 300 x 1100 pixels.

70

6. A real-world Example

Thesis.save

createSubject

rateSubject

Thesis.update

setStudentset2ndApprover

Thesis.update Thesis.update

registerThesis

setStartPresentation

Thesis.update

setMidPresentationsetEndPresentation

Thesis.updateThesis.update

completeThesis

Thesis.update

approverRating

2ndApproverRating

tutorRating

Thesis.update Thesis.update

Thesis.update

Mail.send

improveSubject

Thesis.update

rateSubject

Thesis.update

Thesis.update

else

external
Thesis

Figure 6.2.: The thesis process modeled using the Composr notation.

71

6. A real-world Example

6.2. Metrics

A comparison between the generated BPEL by Composr and the BPEL manually cre-
ated in the BPEL Designer would not add much value to this discussion, since, as has
been seen in chapter 5, the BPEL generated by Composr is still incomplete. There-
fore, the metrics to be defined in this section will concentrate on aspects concerning
the usage of the tools, assuming both were complete.

Number of Elements (NoE) The NoE in a business process model is hereby being
defined as the number of activities observable in the diagram, explicitly excluding links
between activities. For semantically equal process models, a lower NoE is considered
beneficial.

The NoE for the process shown in the BPEL Designer is about 290. The NoE for the
process shown in the Composr notation is about 40.

Size of Diagram (SoD) The number of million pixels needed to display a process
diagram on a 72 dpi screen will be called SoD. The scaling of the diagram must be
appropriate for viewing and editing. For the size of the Composr diagram, a scale
has been chosen that lets the size of a single activity be about the same size as an
activity in a diagram displayed using the ActiveBPEL Designer. For semantically equal
process diagrams, a lower SoD is considered beneficial.

The SoD for the process shown in the BPEL designer is about 30.8. The SoD for the
process shown in the Composr notation is about 0.33.

Number of Artifacts to be maintained (NoAm) The NoAm for an executable busi-
ness process is hereby being defined as the number of files that need to be changed
to maintain the executable process. For semantically equal process models, a lower
NoAm is considered favorable.

The NoAm for the process shown in the BPEL designer is 37 (13 BPEL files, 6 WSDL
files, 4 XML Schema files, 13 deployment descriptors, 1 build file). The NoAm for the
process shown in the Composr notation is 1 (the Composr process file).

Complexity (CFCBPEL, CFCCPSR) In [24], a metric for the complexity of BPEL pro-
cesses is presented, the CFC metric — measuring the control flow complexity. Since
the Composr notation contains basically the same activities as BPEL, it might be in-
sightful to apply the CFC metric originally targeted at BPEL to a process modeled
using Composr. Therefore, CFCBPEL := CFC

CPSR is defined. Of course, the metric
was intended for the comparison of BPEL processes, so this should only be taken as
a supportive indicator in conjunction with others, not as a crucial one. For semantically
equal process models, a lower CFC is considered beneficial.

72

6. A real-world Example

The process modeled in Composr has a CFC
CPSR of 66. Since the process modeled

in the ActiveBPEL Designer has at least 126 basic activities alone, it is safe to say that
it has a CFCBPEL � 126.

Expressiveness The expressiveness of a tool for BPEL development is hereby be-
ing defined as the percentage of 65 distinct BPEL elements as defined in [8] that can
be influenced by the tool. A higher expressiveness is considered advantageous.

This is a complete listing of all 65 elements considered when calculating expressive-
ness: assign, branches, catch, catchAll, compensate, compensateScope, compen-
sationHandler, completionCondition, condition, copy, correlation, correlations, correla-
tionSet, correlationSets, else, elseif, empty, eventHandlers, exit, extension, extension-
Activity, extensionAssignOperation, extensions, faultHandlers, finalCounterValue, flow,
for, forEach, fromPart, fromParts, if, import, invoke, joinCondition, link, links, message-
Exchange, messageExchanges, onAlarm, onEvent, onMessage, partnerLink, part-
nerLinks, pick, process, receive, repeatEvery, repeatUntil, reply, rethrow, scope, se-
quence, source, sources, startCounterValue, target, targets, terminationHandler, throw,
toPart, toParts, transitionCondition, until, validate, variable, variables, wait, while.

Composr supports influence on 36 BPEL elements, which equals 55 % of all consid-
ered elements. Even though not all of them can be edited or configured directly, it is
still possible to influence them. E.g., a user of Composr will never see an <assign>
element, but still the choices made for the data sources and data targets for the
<receive>, <reply> and <invoke> activities still alter the quantity and quality of
<assign> elements found in the generated BPEL source. The ActiveBPEL Designer,
as it provides direct access to the source code and through its GUI basically provides
direct graphical representations and configurable options for the elements, can influ-
ence 100% of all considered elements.

Cost In the following section, cost is used as a relative amount of resources — e.g.,
money, time, employees, knowledge — necessary to accomplish a goal.

6.3. Comparison

This section uses the metrics defined in the preceding section for a comparison of
the Composr notation with the notation of ActiveBPEL Designer. It discusses several
aspects by first showing why a specific aspect is relevant in the context of the devel-
opment of service compositions and then comparing what is achieved by both tools
regarding this aspect.

A central aspect of service-oriented architecture is the flexibility aimed for. To be able
to speak about flexibility, a definition of the term is required. This thesis uses the
definition of [25]:

73

6. A real-world Example

The ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically
designed.

I.e., a key advantage of a SOA is that it can easily be adapted for uses and scenar-
ios not envisioned at its inception. This observation will be important in the following
paragraphs.

Maintainability The IEEE defines maintainability [25] as follows:

The ease with which a software system or component can be modified
to correct faults, improve performance or other attributes, or adapt to a
changed environment.

As can be seen, the definition of maintainability is relatively similar to that of flexibil-
ity, as they both consider the ease of adaption to changed environments. Therefore,
maintainability is a crucial quality for executable business processes.

Metrics relevant for this aspect are the NoE, the SoD, and the NoAm of an executable
business process. For each metric, a lower value translates to better maintainability,
because

• a lower number of elements in a process means there are fewer potential sources
for defects,

• a clearer diagram improves navigability of the process and therefore the quality
of orientation in it, and,

• a lower number of artifacts to be maintained means there are fewer chances for
side-effects.

As has been shown in the previous section, the values for the ActiveBPEL Designer are
consistently and significantly higher than those for the Composr tool. If these assump-
tions hold true, business processes created using the Composr tool exhibit a much
better level of maintainability than those developed using the ActiveBPEL Designer.

As can be seen from tables 6.1 and 6.2, this advantage would be even higher if gener-
ated service had been taken into account, since the portion of manual code would be
0 % for the Composr tool.

Complexity The IEEE defines complexity [25] as follows:

The degree to which a system or component has a design or implementa-
tion that is difficult to understand and verify.

74

6. A real-world Example

To modify a system or component safely, it is necessary to understand it. Thus, main-
tainability, and therefore the flexibility advantage of a SOA, is directly dependent on the
complexity of its executable business processes.

While both notations represent the same business process, but use different abstrac-
tions, the semantics of the process models are the same in a business sense, but
their complexities differ. As has been shown in the preceding section, the CFC

BPEL

of the process modeled in the ActiveBPEL Designer is significantly higher than the
CFC

CPSR of the process modeled using the Composr notation. Also, the sheer NoE
as defined before can be taken as an indicator for complexity, which supports the pre-
ceding observation. Therefore, because the Composr notation lowers complexity, it
has an advantage over the ActiveBPEL Designer notation when supporting the flexi-
bility essential to SOA.

Knowledge required If less knowledge is required to use a software tool, it can be
used in more scenarios, since more roles are able to operate it. This can be seen
as an advantage in flexibility and maintainability, since changing the process becomes
less expensive and, therefore, easier to accomplish for an organization.

The ActiveBPEL Designer’s notation is a direct mapping to the underlying BPEL. To
understand its constructs, the user must have detailed knowledge of BPEL. The no-
tation used by Composr, however, provides more abstractions, requiring the user only
to have a basic understanding of control flow and the receive, reply, and invoke con-
cepts primarily present in the Web Services context. Therefore, the Composr notation
supports flexible SOAs, as it demands less knowledge from the user.

Expressiveness The improved flexibility of the Composr notation observed in the
preceding paragraphs comes at the cost of expressiveness. According to the definition
of expressiveness from the preceding section, ActiveBPEL Designer with an expres-
siveness of 100 % is more expressive than Composr, which has an expressiveness of
55 %.

Higher abstractions always result in fewer ways possible available for expression. With
features like faultHandlers, eventHandlers and correlationSets not included, Composr’s
scope of application is different from that of a complete BPEL editor.

Nevertheless, the usage of Composr is appropriate in several scenarios in which a
higher level of abstraction is more important than function completeness. E.g., organi-
zations initiating SOA development might especially profit from its use, as the provided
abstractions lower the entry-barrier and the generated artifacts can still be modified
using full-featured tools like the ActiveBPEL Designer. This would enable users to first
generate a high-level process that is already functional, and to later add handling of
exceptional events and requirements. Therefore, users might profit from the higher ab-
stractions in the beginning, while still being able to leverage more powerful tools once
the need arises.

Table 6.3 provides a summary of the values found for each tool regarding the metrics

75

6. A real-world Example

defined before. In combination with the aspects compared in this section, it shows
that the usage of higher abstractions as they are provided by Composr has significant
advantages.

Table 6.3.: Summary of the values for each tool
Metric ActiveBPEL Designer Composr

Number of Elements ~ 290 ~ 40
Size of Diagram 30.8 0.33
Number of Artifacts to be maintained 37 1
Complexity � 126 66
Expressiveness 100 % 55 %

76

7. Related Work

This chapter discusses works found to be related to this thesis’ approach, shows sim-
ilarities and draws distinctions to the scope of the thesis. The first section examines
work related to the model-driven development of executable processes, while the sec-
ond section mentions products that are already available.

7.1. Model-Driven Development of executable Processes

This section identifies work concerned with the generation of executable processes
from a given model.

(1) Gardner [22], and later Ambühler [23], each proposed UML profiles based on
Activity Diagrams with direct mappings to BPEL, thus allowing the creation of UML
models that could directly be translated into an executable process. Ambühler provided
a partial implementation of the UML profile in the form of an Eclipse plug-in targeted
for use with the Rational Software Modeler, which is a UML 2.0 modeling tool built on
top of Eclipse.

Both approaches lack any kind of abstraction as it can be found in this thesis; models
would always be a direct representation of the underlying BPEL constructs. As the
notation used by Ambühler stayed very close to the Activity Diagrams notation, sev-
eral elements lacked obvious distinctive features — e.g., the representations of the
receive and reply elements are both represented like a regular UML Activity with
only a small decorating arrow indicating the direction of data flow. Also, archives for
deployment or the generation of services were out of scope.

(2) Decker et al. [26] proposed an extension layer to BPEL which allows the genera-
tion of abstract BPEL processes from models of choreographies while decoupling be-
haviour from actual endpoints. This research has spawned a tool1 that offers graphical
modeling of choreographies using BPMN and can export to abstract BPEL processes.

While similar in approach, on business process modeling level, the addressed issues
are different from those addressed in this thesis. While the latter is concerned with
service orchestrations, the concept of Decker et al. provides a solution for service
choreographies. As choreographies are formal contracts used to govern orchestra-
tions, both approaches rather complement each other.

1http://bpel4chor.org/editor/

77

7. Related Work

(3) Based on the work presented by Ouyang et al. in [27], Giner et al. have created
a tool [28] suitable for creating BPMN models for processes and then translating the
models to BPEL.

As Ouyang et al. point out, transformations from BPMN to BPEL are impossible to
cover all of BPMN, since some constructs available in BPMN cannot be mapped to
BPEL. Therefore, the actual elements used in the tool created by Giner et al. must
always be a subset of BPMN, possibly leading to confusion in users as to which con-
structs are allowed and which are not. This thesis assumes that, to avoid such ambi-
guities, it is best to provide a notation that allows all of its elements to be used, which is
achieved with the Composr notation. Also, neither deployment nor service generation
were an aspect of either work.

(4) In [29], Talib et al. propose a different approach to BPEL generation. Instead of a
graphical notation, they propose a set of consecutive dialogs requesting the necessary
information from the user to model the process internally.

This thesis assumes that for successful and efficient business process modeling, a
graphical overview is essential for orientation. The dialog-based approach by Talib
et al. is therefore assumed to significantly lack in these aspects. Also, there is no
generation of services and several important technical details are left to the user, e.g.,
data transformations and namespaces.

(5) The generation of BPEL processes from EPC models has been described by
Ziemann & Mendling et al. [30], and from Nautilus EPC to BPEL by Kopp et al. These
approaches allow the development organisation to translate the control flow of the
business processes to the service compositions. However, definitions of services and
data is missing and have to be added manually to the generated compositions.

In order to further refine these approaches, Schmelzle [31] proposed the annotation
of business processes with the required technical details: Service definitions and the
data types of business objects are added in a pure development view. A generator can
create a fully functional service composition. The developers then need to fine-tune it
and add error handling.

These approaches use a simplistic notation (event-driven process chains) combined
with the annotation of the graphical elements with technical details, possibly by an-
other role. This is very similar to the approach presented in this thesis. Nevertheless,
deployment and service generation have not been included, which limits the potential
for integration of tasks into a single workflow.

(6) The approach pursued by Lübke [1] also builds upon the aforementioned strate-
gies using EPCs, but extends it by also covering the transformation of use cases to
EPCs and then integrating extended support for tests and the generation of graphical
client applications for generated processes.

78

7. Related Work

While there are intersecting elements between Lübke’s approach and this thesis, the
former is much broader in scope. Some of these aspects are being addressed in
section 8.2. Nevertheless, the approach misses some concepts introduced in this
thesis, namely the generation of services used by the modeled process.

7.2. Available Products

This section presents existing products pursuing similar or related approaches to what
is being presented in this thesis.

(1) NetBeans2 is an IDE by Sun Microsystems primarily targeted at Java develop-
ment, but also supporting many other technologies using a plug-in system. One of
those supported technologies is BPEL, which can be created using a BPEL editor that
provides graphical elements for the constructs found in BPEL.

While this approach has been criticized in this thesis for its lack of abstraction from
technical details as provided by Composr, the NetBeans BPEL editor includes the so-
called BPEL Mapper, improving the configuration of assign elements. Its approach is
quite similar to the data mappings found in this thesis, as can be seen in the screenshot
shown in figure 7.1.

Figure 7.1.: A screenshot showing the BPEL Mapper of the NetBeans IDE.

2http://netbeans.org/

79

http://netbeans.org/

7. Related Work

(2) objectiF3 by microTOOL GmbH is a tool covering the whole process of model-
driven development. It uses BPMN for process models and UML for all other models.
All aspects of an application can be modeled in an integrated environment, including
the data and presentation layers. Services are being implemented using EJB 3 Ses-
sionBeans, while business processes use WS-BPEL. By reflecting changes in code in
the model and the other way around, the application supports round-trip engineering.

While being significantly larger in scope and targeted at a different, more technical au-
dience, the concept of generating WS-BPEL from a process model found in objectiF
is also covered by Composr. Despite its solid support for the creation of Web Ser-
vices, objectiF does not provide predefined services in a way similar to Composr. But
as objectiF provides means for users to specify their own transformations from mod-
els to code, the commodity service concept could probably be introduced by users
themselves.

(3) MagicDraw4 is a graphical UML editor by No Magic, Inc., featuring the ability to
export BPMN diagrams to BPEL4WS (BPEL 1.1).

While a mapping from BPMN to BPEL has been shown to be problematic before [27],
the generated BPEL is restricted for deployment inside a BEA WebLogic Server5.

(4) Intalio BPMS6 is a tool suite targeted at business process management, based on
Eclipse. It provides a designer application, used to create BPMN models, and a server
runtime, used to run the WS-BPEL processes generated from the BPMN models.

The designer application shares Composr’s concept of supplying different views for
different roles. While the business process designer will most likely only see the pro-
cess diagram, a developer can switch to a technical view to complete the process
model, e.g. by providing data transformations. For this, the Intalio Designer provides
a data mapping GUI similar to that introduced in this thesis, as well as the BPEL Map-
per found in the NetBeans IDE which was mentioned at the beginning of this section.
Figure 7.2 shows a screenshot of Intalio Designer containing the business process
modeling canvas in the upper half and the data mapper in the lower half.

Similar to the objectiF application presented before, the Intalio Designer also support
round-trip engineering, something that Composr is not aimed at.

Additionally, the Intalio BPMS enables human tasks in a business process by support-
ing BPEL4People on the process side and using XForms[32] for the user interface side.
For the creation of the latter, a forms editor is included. The actual services used by
the modeled process are expected to exist or to be developed manually, though, as in
the Intalio BPMS, there is nothing similar to the commodity service concept presented
in this thesis.

3http://microtool.de/objectif/
4http://magicdraw.com/
5http://bea.com/weblogic/
6http://intalio.com/

80

http://microtool.de/objectif/
http://magicdraw.com/
http://bea.com/weblogic/
http://intalio.com/

7. Related Work

Figure 7.2.: A screenshot showing the process modeling canvas and the data mapper
of the Intalio Designer.

(5) The WSO2 Web Services Application Server7 (WSAS) is an application server
that federates several Web Services-related technologies into a single middleware
server, primarily targeted at the exposure of functionality as Web Services.

WSAS includes the ability to create new data services using its web frontend. This
approach has some similarities to the PersistenceService presented in this thesis and
acknowledges the need for easy exposure of data as services. Nevertheless, there
are significant differences in the approaches, as WSAS data services require the user
to manually enter an SQL query for each operation to be exposed, while the Persis-
tenceService will always provide a predefined set of operations. This is a trade-off
between the level of abstraction achievable and the desired versatility of the solution.
The addition of such an option to Composr might be desirable for scenarios in which
more diverse views on the data are required than can be provided by the Persistence-
Service.

7http://wso2.org/projects/wsas/java

81

http://wso2.org/projects/wsas/java

8. Conclusions and Outlook

This chapter first provides a critical appraisal of the thesis’ contributions, while after-
wards, an outlook is being given on possible future work that might relate to or stem
from this thesis. The last section concludes the thesis with a summary of its accom-
plishments.

8.1. Critical Appraisal

The approach to the model-driven development of service compositions presented in
this thesis provides several benefits that improve the conventional creation of exe-
cutable processes and associated services significantly. This section presents some
of the main benefits and discusses the execution of the thesis.

By providing a concept and the partial implementation of a software tool, this thesis
introduces significant abstractions for the development of BPEL processes, lowering
the amount of initial manual work required.

BPEL employs a “whiteboard” approach for reading and writing data used through-
out the process, i.e., all data is stored in global variables accessible by every activity
contained in the process. This may lead to side effects when multiple activities are
writing to a variable, as this approach makes it hard for developers to think of all the
places a variable is used in, when only introducing a small, seemingly local change.
Although the visibility of variables can be restricted to some extend using the scope
construct, the problem remains on a slightly smaller scale. The situation is worsened
by BPEL requiring multiple assign statements — even for simple tasks — which are
cumbersome to create.

Implementing the data flow graph approach to data management as an abstraction on
top of BPEL, this thesis overcomes these problems by allowing process developers to
create data mappings for each data sink, with the availability of any data that has been
received so far in the process. This approach increases the orientation a developer
can achieve within a process and removes the mentioned side effects altogether. By
providing quick access to already used data mappings, repetitive tasks are reduced
further.

The generator has been designed to be replaceable with new generation strategies im-
plemented by interested parties, thereby allowing for the generation of artifacts not yet
accounted for in the tool and providing a means for supporting different technologies.
Independently from issues specific to a particular process language, the approach
presented in this thesis simplifies the overall workflow required for the development of

82

8. Conclusions and Outlook

executable business processes.

Supporting the participation of multiple roles in process modeling, different target au-
diences are provided with different views upon the same process. This allows for the
usage of the same process model in different areas of development: while a business
analyst might initially create the process, it can be refined by a technical developer and
finally be generated and deployed by an administrator. This approach reduces losses
occurring during the transition of information into different media, since the number of
such transitions is reduced drastically.

The simple notation helps comprehension by members of different roles by hiding
technical details in the configuration of its elements. The abstractions it provides
unite multiple technical concepts into a single one in the graphical view — e.g., the
Loop element of the notation represents three concepts present in BPEL: the while,
repeatUntil, and forEach elements.

By introducing the commodity service concept, the approach presented in this thesis
relieves developers of the repetitive implementation of several similar services required
for data persistence. By providing an interface common to all commodity services, in-
terested parties may introduce their own service generator into the tool, thereby further
increasing its flexibility.

The restricted expressiveness of the presented approach might render it inappropriate
for complex SOA projects. Nevertheless, target audiences that require a fast intro-
duction to process development or immediate results that may still be refined later on
could benefit significantly from the abstractions developed in this thesis.

While the premise of the thesis — the exploration and evaluation of a concept for
model-driven development of service compositions — can be regarded as being suc-
cessful, the execution of the thesis was not optimal at all times.

Due to the time constraints imposed on a Master’s thesis, both the concept and the
development had to be restricted in scope. Therefore, several concepts available in
BPEL were planned not to be supported by the approach, e.g. correlation sets and
fault handlers.

Many technologies and concepts were required during the course of this thesis, as
it incorporates and tries to unite two vast fields of ongoing research — model-driven
development and service-oriented architecture. Because the effort required for acquir-
ing the knowledge and experience needed to cover all aspects that were planned to
be included was initially underestimated, the scope of the thesis had to be restricted
further after about half the allocated time.

Namely, the priority for the user interface was lowered, while the priority for the gener-
ator was raised. Instead of using process models supplied by the user interface, the
development of the generator used process models manually created in Java. As the
same structures were passed as they would be provided by the Eclipse plug-in, this
resulted in an appropriate decoupling of both aspects.

Still, the generator has not been developed as completely as was planned. Since
the technology involved in the generation is partly still very immature, development

83

8. Conclusions and Outlook

was significantly hindered not by conceptual, but by very low-level, technical problems.
E.g., the only documentation available on the use of the BPEL object model from the
Eclipse project was the source code itself, which was only sparsely commented.

Nevertheless, this thesis has achieved a proof of concept by showing a prototypical and
partial implementation of the envisioned application, supported by a formally defined
UML profile for the metamodel used therein and a notation that has been refined based
on feedback from a survey.

8.2. Outlook

This section provides an outlook on further work that could be based on the results of
this thesis. It is divided into two sections: the first describes ideas that use the tool
as their basis, i.e., the graphical editor and the generator. The second one suggests
ideas for exploring the commodity service concept.

8.2.1. Graphical Editor and Generator

To ensure only processes resulting in valid BPEL code can be passed on to the gen-
erator, static checks could be implemented, denying the generation of processes not
consistent with the static constraints defined by [8]. Errors resulting from these checks
could then be incorporated into the “Problems View” of the Eclipse IDE. This would
also provide a list of missing configuration details, improving the overview the devel-
oper has over the process.

To visually map activities to partners participating in an executable business process,
the concept of swimlanes as known from Activity Diagrams could be incorporated into
the metamodel and the notation. This would perhaps allow for models that are even
better to understand.

In order to extend the range of supported BPEL constructs, e.g., concepts for even-
tHandlers, faultHandlers, or correlationSets could be introduced into the abstraction.
An implicit correlationSet generated into all processes could even be easily imple-
mented by assigning a process an identification number and using this in all commu-
nication with clients. Of course this would alter the interface of the process defined by
the user, so this should be an optional choice.

To allow for interaction with humans, support for BPEL4People could be integrated,
possibly introducing a new abstraction or a new kind of commodity service. This could
be combined with the addition of the generation of client applications either tailored to
the specific process or the usage of generic clients, supporting access to a wide range
of processes.

The addition of solutions for non-functional requirements such as security or transac-
tions could add further value to the approach. This could be achieved by integrating
the process with an aspect-based BPEL container as presented in [33].

84

8. Conclusions and Outlook

Due to its extendable architecture, the generator could be modified to export to other
languages using specialized generation strategies. E.g., executable processes could
be generated using YAWL1 while service generation could be implemented using the
.NET framework2.

To add further support for common software development processes, the generation
of test stubs or test skeletons could be introduced, e.g. using the BPELUnit3 testing
framework for BPEL processes. Also, the generation of complete tests for the gener-
ated services could be feasible.

Similar to the concept of commodity services, predefined abstractions could be con-
ceived and integrated into the tool, improving comfort even further. A simple example
might be a construct similar to “for each” in Java, allowing the iteration over all elements
of a collection. The usage of more complex modeling patterns could be explored to
create a pattern language available in modeling, further abstracting the created model.

8.2.2. Commodity Services

This thesis includes one commodity service, the persistence service. On a technical
level, there are already several opportunities for extension. The generation could be
extended for Web Service engines other than Apache Axis2 to support a richer set
of target engines. The annotations provided by JSR 181 [34] — e.g., @WebMethod,
@WebService, @SOAPBinding— could be leveraged, leading to a leaner, more read-
able and thus more maintainable service implementation.

But stepping back, services can generally be understood as data sinks and sources.
From this view, several other possible commodity services that could be of much use
when developing business processes come to mind. Following is a small selection of
some such ideas.

REST Services

What could be considered as a backlash reaction to the heavy-weight Web Services
standards, more light-weight approaches are gaining traction fast amongst developers.
The prime example for this movement is the increasing usage of the REST (Represen-
tational State Transfer, [35]) architectural style for developing weakly-typed, non-self-
describing services commonly using HTTP for transport and method invocation.

The approach presented in this thesis would benefit from support for these light-weight
alternatives, as process modelers would instantly gain access to many services al-
ready in existence. A new commodity service could be provided, wrapping “RESTful”
services to make them accessible to the generated BPEL process. In contrast to Web
Services that use WSDL, these services are generally not self-describing. Thus, the

1http://www.yawl-system.com/
2http://msdn.microsoft.com/netframework/
3http://bpelunit.org/

85

http://www.yawl-system.com/
http://msdn.microsoft.com/netframework/
http://bpelunit.org/

8. Conclusions and Outlook

user would need to specify the interface of the service manually. A method to describe
such light-weight services has been proposed [36] and the HTTP binding of WSDL
2.0 [37] has brought some improvements in this area [38], but neither option has yet
entered general use.

Feeds

Feeds, best know for their news feeds incarnation, commonly use the RSS [39] or
Atom [40] formats. Using only a URL as a parameter given by the modeler, a com-
modity service could be generated, providing access to the items in the specified feed.
The development of this commodity service should be trivial, as the formats clearly
specify the defined elements and attributes. The BPEL process could thus use items
and their properties.

While this would not appear very useful when being limited to news feeds, it must be
noted that the mentioned formats do not have to be used for news — the simplicity and
the general nature of the vocabulary used (e.g. “‘entry” and “item”) makes it easy to
adopt the formats for new uses. E.g., a service registry supporting the Atom Publishing
Protocol [41] has been developed [42] in the context of light-weight approaches to
services.

8.3. Conclusions

This thesis has introduced several important concepts supporting a model-driven ap-
proach to the development of service compositions. This section concludes the thesis
by summarizing it and highlighting its central achievements.

The first chapter gave an introduction to the central problems relevant to this thesis
and provided an outline of how these problems were to be addressed. To provide the
technical background necessary for understand the presented solution, chapter 2 gave
an overview of the central concepts employed in the following chapters.

The approach pursued by this thesis was presented in chapter 3, describing the in-
tended workflow and supporting this by showing a possible scenario for the application
of the thesis’ results. Based on the requirements implied by this workflow, a metamodel
for executable business processes was developed as a UML profile in chapter 4. A no-
tation for the profile was drafted and eventually finalized based on the results of a
survey conducted among students.

Facilitating the workflow concept and the associated metamodel created before, chap-
ter 5 showed how the development of a prototypical implementation of the envisioned
tool was accomplished. It outlined the decisions made for the design and the utilized
technologies, explained the encountered challenges and the strategies employed to
overcome them.

An assessment of the value of the approach developed in this thesis was provided

86

8. Conclusions and Outlook

by chapter 6. Based on a real-world example and the definition of some metrics, the
thesis’ concept was contrasted with an existing application for the modeling of BPEL
processes, thereby providing the basic indicators for the subsequent evaluation of the
concept’s fitness for SOA development.

Chapter 7 gave a presentation of some of the approaches, works, and products re-
lated to this thesis’ concept, providing an overview for each as well as a discussion
of similarities and differences. It is followed by this chapter, which first gave a critical
view on the thesis’ accomplishments, then outlined possible future work that could be
based upon its achievements, and finally concludes the thesis.

As has been shown in chapter 7, the approach developed in this thesis distinguishes
itself from existing works primarily by proposing an integrated development process
for service compositions that includes the generation of commonly needed services.
Therefore, this thesis can serve as a basis for further research on integrating the di-
verse tasks occurring in SOA development into a single workflow.

87

Bibliography

[1] Daniel Lübke. An Integrated Approach for Generation in Service-Oriented Archi-
tecture Projects. PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover, Sep
2007.

[2] W M P van der Aalst, A H M ter Hofstede, B Kiepuszewski, and A P Barros.
Workflow patterns, 7 2003.

[3] The Web Services-Interoperability Organization. Basic Profile Version 2.0, 10
2007.

[4] Anne Thomas Manes. The “wrapped” document/literal
convention. http://atmanes.blogspot.com/2005/03/
wrapped-documentliteral-convention.html; last access: 2007-12-
11, 2005.

[5] David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer Second
Edition. http://www.w3.org/TR/xmlschema-0/; last access: 2007-12-12,
2004.

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. W3C, 3 2001.

[7] BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems. Business
Process Execution Language for Web Services version 1.1, 5 2003.

[8] OASIS. Web Services Business Process Execution Language Version 2.0, 4
2007.

[9] Thomas Stahl and Markus Völter. Modellgetriebene Softwareentwicklung.
dpunkt.verlag GmbH, 2005.

[10] Sun Microsystems, Inc. JavaTMPlatform, Enterprise Edition 5 (Java EE 5) Speci-
fication, 5 2006.

[11] David Heinemeier Hansson et al. Ruby on RailsTM2.0. http://www.
rubyonrails.org/; last access: 2007-12-12, 6 2007.

[12] Sun Microsystems, Inc. Enterprise JavaBeansTM3.0, 11 2007.

[13] OMG Model Driven Architecture. http://www.omg.org/mda/; last access:
2007-12-12, 11 2007.

[14] Object Management Group. Unified Modeling Language: Superstructure, 2.1.1
edition, 2 2007.

88

http://atmanes.blogspot.com/2005/03/wrapped-documentliteral-convention.html
http://atmanes.blogspot.com/2005/03/wrapped-documentliteral-convention.html
http://www.w3.org/TR/xmlschema-0/
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.omg.org/mda/

Bibliography

[15] Object Management Group, Inc. Meta Object Facility (MOF) Core Specification
2.0, 1 2006.

[16] Object Management Group, Inc. Object Constraint Language 2.0, 5 2006.

[17] Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification, 7 2007.

[18] Object Management Group, Inc. MOF 2.0/XMI Mapping, Version 2.1.1, 12 2007.

[19] Unified Modeling Language: Superstructure; Activities, pages 295–417. Object
Management Group, 2.1.1 edition, 2 2007.

[20] Object Management Group, Inc. Business Process Modeling Notation (BPMN)
Specification, 2 2006.

[21] Chun Ouyang, Marlon Dumas, Stephan Breutel, and Arthur ter Hofstede. Trans-
lating Standard Process Models to BPEL. In Advanced Information Systems En-
gineering, Lecture Notes in Computer Science, pages 417–432, 2006.

[22] Tracy Gardner. UML Modelling of Automated Business Processes with a Map-
ping to BPEL4WS. In First European Workshop on Object Orientation and Web
Service (EOOWS), 2003.

[23] Thomas Ambühler. UML 2.0 Profile for WS-BPEL with Mapping to WS-BPEL.
Master’s thesis, Institut für Architektur von Anwendungssystemen, Universität
Stuttgart, 2005.

[24] Jorge Cardoso. Complexity analysis of BPEL Web processes. Software Process:
Improvement and Practice, 12(1):35–49, 2007.

[25] The Institute of Electrical and Electronics Engineers. IEEE Standard Glossary of
Software Engineering Terminology, 2 2006.

[26] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske. Bpel4chor: Ex-
tending bpel for modeling choreographies. In ICWS 2007, pages 296–303. IEEE
Computer Society, 2007.

[27] C Ouyang, W van der Aalst, M Dumas, and et al. Translating BPMN to BPEL. In
BPM Center Report BPM-06-02. BPMcenter.org, 1 2006.

[28] P Giner, V Torres, and V Pelechano. Bridging the Gap between BPMN and WS-
BPEL. M2M Transformations in Practice. In Proceedings of the 3rd International
Workshop on Model-Driven Web Engineering, 2007.

[29] Muhammad Adeel Talib, Zongkai Yang, and Qazi Mudassir Ilyas. A framework
towards web services composition modeling and execution. In BSN ’05: Proceed-
ings of the IEEE EEE05 international workshop on Business services networks,
2005.

89

Bibliography

[30] Oliver Kopp, Tobias Unger, and Frank Leymann. Nautilus Event-driven Process
Chains: Syntax, Semantics, and their mapping to BPEL. In Markus Nüttgens,
Frank J.Rump, and Jan Mendling, editors, EPK 2006 – Geschäftsprozessman-
agement mit Ereignisgesteuerten Prozessketten, pages 85–104. Gesellschaft
für Informatik e.V., Arbeitskreis Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten (WI-EPK), 2006.

[31] Oleg Schmelzle. Transformation von annotierten Geschäftsprozessen nach
BPEL. Master’s thesis, Gottfied Wilhelm Leibniz Universität Hannover, May 2007.

[32] John M. Boyer. XForms 1.0 (Third Edition). http://www.w3.org/TR/
xforms/; last access: 2007-12-17, 2007.

[33] Anis Charfi and Mira Mezini. An aspect-based process container for bpel. In
AOMD ’05: Proceedings of the 1st workshop on Aspect oriented middleware de-
velopment, 2005.

[34] Java Community Process. JSR-181: Web Services Metadata for the JavaTM
Platform, 2005.

[35] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[36] Marc J. Hadley. Web Application Description Language (WADL). Technical Re-
port TR-2006-153, Sun Microsystems Laboratories, 2006.

[37] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) Version 2.0. http:
//www.w3.org/TR/wsdl20/; last access: 2007-12-12, 2007.

[38] Eran Chinthaka. Enable REST with Web Services, Part 1: REST and
Web Services in WSDL 2.0. http://www.ibm.com/developerworks/
webservices/library/ws-rest1/; last access: 2007-12-12, 2007.

[39] RSS Advisory Board. RSS 2.0 Specification, 6 2007.

[40] M. Nottingham and R. Sayre. The Atom Syndication Format. http://tools.
ietf.org/html/rfc4287; last access: 2007-12-12, 2005.

[41] J. Gregorio and B. de hOra. The Atom Publishing Protocol. http://tools.
ietf.org/html/rfc5023; last access: 2007-12-12, 2007.

[42] Paul Fremantle. A new kind of (SOA) Registry. http://pzf.fremantle.
org/2007/12/new-kind-of-soa-registry.html; last access: 2007-12-
12, 2007.

90

http://www.w3.org/TR/xforms/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/
http://www.ibm.com/developerworks/webservices/library/ws-rest1/
http://www.ibm.com/developerworks/webservices/library/ws-rest1/
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://pzf.fremantle.org/2007/12/new-kind-of-soa-registry.html
http://pzf.fremantle.org/2007/12/new-kind-of-soa-registry.html

A. Survey

Thank you very much for taking the time to take part in this survey. Answering the
questions will take about 10 minutes. Your participation will help me in improving the
quality of my Master’s thesis.

The aim of this survey is the comparison of two notations for modeling business pro-
cesses.

A business process is a directed graph whose nodes are activities. Possible activities
might be

• the reception of a request from a client by the process ("Take this order!")

• the calling of a service ("Please get me these ordered books!")

• the return of an answer to a client ("Received your order!")

These activities can be structured, e.g., by

• conditional branching into alternative activities,

• the repetition of activities,

• parallel branching into activities to be executed at the same time.

A single process can be running for a long time (order received, order products, com-
mission shipper, mail invoice, check receipt of money) and serve different clients (cus-
tomers, suppliers, logistics, accounting).

Potential users of the notation are technical as well as non-technical users. Therefore,
it is okay if you do not understand some of the terms — to the contrary, that would
increase the variance of the data available to me.

Part 1

Question 1.1 — Do you know the Activity Diagrams of the UML?

Possible answers: yes / no

Question 1.2 — If yes, do you use Activity Diagrams?

Possible answers: often / from time to time / rarely / tried it once / never

91

A. Survey

Question 1.3 — Do you know BPEL, i.e., would you understand its XML syntax?

Possible answers: yes / somewhat / no

Part 2

In figure A.1, you see an example process, modeled using notation A.

backorder
Book

notify
Unavailable

addBook
ToShipment

send
Shipment

email
Invoice

Figure A.1.: An example process modeled using notation A.

Please try answering the following questions as good as possible. As I also try to
understand how intuitively comprehensible the notations are, I will not give any more
clues regarding the process or the notation. You can informally describe activities
lacking a distinct name.

Question 2.1 — Which activities are being executed in parallel?

Possible answers: free text entry.

Correct answer: send Shipment, email Invoice.

Question 2.2 — Which activities are being executed if a book could not be
backordered?

Possible answers: free text entry.

Correct answer: notify Unavailable.

Question 2.3 — What happens to a book that could successfully be
backordered?

Possible answers: free text entry.

Correct answer: it is being added to the shipment.

92

A. Survey

Question 2.4 — Which activities are being executed multiple times?

Possible answers: free text entry.

Correct answer: backorder Book and the one including notifyUnavailable and ad-
dBookToShipment.

Question 2.5 — How many different requests does the process accept?

Possible answers: free text entry.

Correct answer: 2.

Question 2.6 — How many different responses does the process return?

Possible answers: free text entry.

Correct answer: 1.

Part 3

In figure A.2, you see another example process, this time modeled using notation B.

Please try answering the following questions as good as possible. Again, I will not
give any more clues regarding the process or the notation. Again, you can informally
describe activities lacking a distinct name.

Question 3.1 — Which activities are being executed in parallel?

Possible answers: free text entry.

Correct answer: emailManager, emailRequester.

Question 3.2 — Which activities are being executed if no date can be
negotiated?

Possible answers: free text entry.

Correct answer: returnRejection, emailRejection.

Question 3.3 — Which activities are being executed multiple times?

Possible answers: free text entry.

Correct answer: requestAlternativeDate.

93

A. Survey

Figure A.2.: An example process modeled using notation B.

94

A. Survey

Question 3.4 — What happens if the date proposed initially is not available?

Possible answers: free text entry.

Correct answer: 10 different dates will be tried.

Question 3.5 — How many different requests does the process accept?

Possible answers: free text entry.

Correct answer: 1.

Question 3.6 — How many different responses does the process return?

Possible answers: free text entry.

Correct answer: 2.

Part 4

Question 4.1 — Which of both notations do you feel is more comprehensible?

Possible answers: notation A / notation B

Question 4.2 — Which of both notations do you feel is more clear?

Possible answers: notation A / notation B

Question 4.3 — Does notation A include enough information to understand
what the process is about?

Possible answers: rather too much detail / just about right / rather too little detail

Question 4.4 — Does notation B include enough information to understand
what the process is about?

Possible answers: rather too much detail / just about right / rather too little detail

Question 4.5 — Do you want to add anything else regarding the notations? Did
something stand out for being positive or negative?

Possible answers: free text entry.

95

B. Final Notation

Table B.1 shows the final version of the Composr notation, listing the available graphi-
cal representations and their respective stereotypes.

invoke

receive

reply

The representation for the Link
stereotype.

The representation for the
Start stereotype.

The representation for the End
stereotype.

The representation for the
Receive stereotype.

The representation for the
Reply stereotype.

The representation for the
Invoke stereotype.

The representation for the Loop
stereotype.

The representation for the
LoopEnd stereotype.

The representation for the If
and IfEnd stereotypes.

The representation for the Pick
and PickEnd stereotypes.

The representation for the Flow
and FlowEnd stereotypes.

Figure B.1.: The final version of the Composr notation.

96

C. Generated Artifacts

This appendix contains listings for some of the artifacts generated from the process
model used during development.

1 <?xml version="1.0" encoding="UTF-8"?>
2 < w s d l : d e f i n i t i o n s xmlns : tns="http://composr/tns/PersonPersistenceService"

xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl" xmlns:soap="http:
//schemas.xmlsoap.org/wsdl/soap/" xmlns:wsdl="http://schemas.xmlsoap.org
/wsdl/" targetNamespace="http://composr/tns/PersonPersistenceService">

3 <wsd l : types>
4 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

a t t r i bu teFo rmDe fau l t ="qualified" elementFormDefault="qualified">
5 < xs : impo r t namespace="http://composr/tns" schemaLocation="Process01.

xsd" / >
6 < xs : impo r t namespace="http://composr/tns/PersonPersistenceService"

schemaLocation="PersonPersistenceService.xsd" / >
7 < / xs:schema>
8 < / wsd l : t ypes>
9 <wsdl:message name="saveResponse">

10 < w s d l : p a r t name="parameters" element="tns:saveResponse">
11 < / w s d l : p a r t >
12 < / wsdl:message>
13 <wsdl:message name="saveRequest">
14 < w s d l : p a r t name="parameters" element="tns:save">
15 < / w s d l : p a r t >
16 < / wsdl:message>
17 <wsdl :por tType name="PersonPersistenceServicePortType">
18 <wsd l :ope ra t i on name="save">
19 < w s d l : i n p u t message="tns:saveRequest" wsaw:Action="urn:save">
20 < / w s d l : i n p u t >
21 <wsd l :ou tpu t message="tns:saveResponse" wsaw:Action="urn:saveResponse"

>
22 < / wsd l :ou tpu t>
23 < / wsd l :ope ra t i on >
24 < / wsdl :por tType>
25 <wsd l :b ind ing name="PersonPersistenceServiceBinding" type="

tns:PersonPersistenceServicePortType">
26 <soap:b ind ing s t y l e ="document" t r a n s p o r t ="http://schemas.xmlsoap.org/

wsdl/soap/http" / >
27 <wsd l :ope ra t i on name="save">
28 <soap:opera t ion soapAct ion="urn:save" s t y l e ="document" / >
29 < w s d l : i n p u t >
30 <soap:body use="literal" / >
31 < / w s d l : i n p u t >
32 <wsd l :ou tpu t>
33 <soap:body use="literal" / >
34 < / wsd l :ou tpu t>
35 < / wsd l :ope ra t i on >
36 < / wsd l :b ind ing >

97

C. Generated Artifacts

37 < wsd l : se rv i ce name="PersonPersistenceService">
38 < w s d l : p o r t name="PersonPersistenceServicePort" b ind ing="

tns:PersonPersistenceServiceBinding">
39 <soap:address l o c a t i o n ="http://localhost:8080/axis2/services/

PersonPersistenceService" / >
40 < / w s d l : p o r t >
41 < / wsd l : se rv i ce >
42 < / w s d l : d e f i n i t i o n s >

Listing C.1: The WSDL description generated for the PersistenceService bound to a
Person type.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:Q1="http://composr/tns" xmlns:xs="http://www.w3.org/2001/

XMLSchema" a t t r i bu teFo rmDe fau l t ="qualified" elementFormDefault="
qualified" targetNamespace="http://composr/tns/PersonPersistenceService"
>

3 < xs : impo r t namespace="http://composr/tns" schemaLocation="Process01.xsd" / >
4 <xs:e lement name="save">
5 <xs:complexType>
6 <xs:sequence>
7 <xs:e lement minOccurs="0" name="person" n i l l a b l e ="true" type="

Q1:Person" / >
8 < / xs:sequence>
9 < / xs:complexType>

10 < / xs:e lement>
11 <xs:e lement name="saveResponse">
12 <xs:complexType>
13 <xs:sequence>
14 <xs:e lement minOccurs="0" name="person" n i l l a b l e ="true" type="

Q1:Person" / >
15 < / xs:sequence>
16 < / xs:complexType>
17 < / xs:e lement>
18 < / xs:schema>

Listing C.2: The XML Schema definition generated for the PersistenceService bound
to a Person type.

1 <?xml version="1.0" encoding="UTF-8"?>
2 < w s d l : d e f i n i t i o n s xmlns:p lnk2="http://docs.oasis-open.org/wsbpel/2.0/

plnktype" xmlns : tns="http://composr/tns" xmlns:wsdl="http://schemas.
xmlsoap.org/wsdl/" name="Process01" targetNamespace="http://composr/tns"
>

3 <p lnk2 :par tnerL inkType name="Process01PLT">
4 < p l n k 2 : r o l e name="Process01Role" portType="Process01PortType" / >
5 < / p lnk2 :par tnerL inkType>
6 <p lnk2 :par tnerL inkType name="PersonPersistenceServicePortTypePLT">
7 < p l n k 2 : r o l e name="Process01Role" portType="Process01PortType" / >
8 < p l n k 2 : r o l e name="PersonPersistenceServicePortTypeRole" portType="

PersonPersistenceServicePortType" / >
9 < / p lnk2 :par tnerL inkType>

10 <wsd l : impor t l o c a t i o n ="PersonPersistenceService.wsdl" namespace="http://
composr/tns/PersonPersistenceService" / >

11 <wsd l : types>
12 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

98

C. Generated Artifacts

13 < xs : impo r t namespace="http://composr/tns" schemaLocation="Process01.
xsd" / >

14 < / xs:schema>
15 < / wsd l : t ypes>
16 <wsdl:message name="persistPersonMessage">
17 < w s d l : p a r t name="parameters" type="tns:Person" / >
18 < / wsdl:message>
19 <wsdl:message name="persistPersonResponseMessage">
20 < w s d l : p a r t name="parameters" type="boolean" / >
21 < / wsdl:message>
22 <wsdl :por tType name="Process01PortType">
23 <wsd l :ope ra t i on name="persistPerson">
24 < w s d l : i n p u t message="persistPersonMessage" / >
25 <wsd l :ou tpu t message="persistPersonResponseMessage" / >
26 < / wsd l :ope ra t i on >
27 < / wsdl :por tType>
28 < / w s d l : d e f i n i t i o n s >

Listing C.3: The WSDL description generated for the process model used during
development.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" a t t r i bu teFo rmDe fau l t =

"qualified" elementFormDefault="qualified" targetNamespace="http://
composr/tns">

3 <xs:complexType name="Person">
4 <xs:sequence>
5 <xs:e lement minOccurs="0" name="id" type="xs:long" / >
6 <xs:e lement minOccurs="0" name="adult" type="xs:boolean" / >
7 <xs:e lement minOccurs="0" name="age" type="xs:int" / >
8 <xs:e lement minOccurs="0" name="birthday" n i l l a b l e ="true" type="

xs:dateTime" / >
9 <xs:e lement minOccurs="0" name="firstName" n i l l a b l e ="true" type="

xs:string" / >
10 <xs:e lement minOccurs="0" name="lastName" n i l l a b l e ="true" type="

xs:string" / >
11 < / xs:sequence>
12 < / xs:complexType>
13 < / xs:schema>

Listing C.4: The XML Schema definition generated for the process model used during
development.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <bpe l :p rocess xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/

executable" xmlns:ns="http://composr/tns" xmlns:ns0="http://composr/tns/
PersonPersistenceService" xmlns:xs="http://www.w3.org/2001/XMLSchema"
exi tOnStandardFaul t="yes" name="Process01" suppressJo inFa i lu re="yes"
targetNamespace="http://composr/tns">

3 < bpe l : impo r t importType="http://schemas.xmlsoap.org/wsdl/" l o c a t i o n ="
Process01.wsdl" namespace="http://composr/tns" / >

4 < bpe l : impo r t importType="http://schemas.xmlsoap.org/wsdl/" l o c a t i o n ="
PersonPersistenceService.wsdl" namespace="http://composr/tns/
PersonPersistenceService" / >

5 < b p e l : p a r t n e r L i n k s >
6 < b p e l : p a r t n e r L i n k myRole="Process01Role" name="Process01PLTPartnerLink"

par tnerL inkType="Process01PLT" / >

99

C. Generated Artifacts

7 < b p e l : p a r t n e r L i n k myRole="Process01Role" name="
PersonPersistenceServicePortTypePLTPartnerLink" par tnerL inkType="
PersonPersistenceServicePortTypePLT" par tnerRole="
PersonPersistenceServicePortTypeRole" / >

8 < / b p e l : p a r t n e r L i n k s >
9 < b p e l : v a r i a b l e s >

10 < b p e l : v a r i a b l e messageType="ns:persistPersonMessage" name="
persistPersonInput1" / >

11 < b p e l : v a r i a b l e messageType="ns0:saveRequest" name="
PersonPersistenceServicePortTypesaveInput2" / >

12 < b p e l : v a r i a b l e messageType="ns0:saveResponse" name="
PersonPersistenceServicePortTypesaveOutput3" / >

13 < b p e l : v a r i a b l e messageType="ns:persistPersonResponseMessage" name="
persistPersonOutput4" / >

14 < / b p e l : v a r i a b l e s >
15 < b p e l : f l o w >
16 < b p e l : l i n k s >
17 < b p e l : l i n k name="L0" / >
18 < b p e l : l i n k name="L1" / >
19 < b p e l : l i n k name="L2" / >
20 < b p e l : l i n k name="L3" / >
21 < b p e l : l i n k name="L4" / >
22 < / b p e l : l i n k s >
23 < bpe l : r ece i v e crea te Ins tance="yes" opera t ion="persistPerson" par tne rL ink

="Process01PartnerLink" portType="Process01PortType" v a r i a b l e ="
persistPersonInput1">

24 <bpe l :sources>
25 <bpe l :source linkName="L0" / >
26 < / bpe l :sources>
27 < / bpe l : r ece i v e >
28 <bpe l :ass ign v a l i d a t e ="no">
29 < b p e l : t a r g e t s >
30 < b p e l : t a r g e t linkName="L0" / >
31 < / b p e l : t a r g e t s >
32 <bpe l :sources>
33 <bpe l :source linkName="L1" / >
34 < / bpe l :sources>
35 <bpel :copy>
36 <bpe l : f rom / >
37 < b p e l : t o / >
38 < / bpel :copy>
39 <bpel :copy>
40 <bpe l : f rom / >
41 < b p e l : t o >
42 <bpe l :query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpath1.0" / >
43 < / b p e l : t o >
44 < / bpel :copy>
45 < / bpe l :ass ign>
46 <bpe l :ass ign v a l i d a t e ="no">
47 < b p e l : t a r g e t s >
48 < b p e l : t a r g e t linkName="L1" / >
49 < / b p e l : t a r g e t s >
50 <bpe l :sources>
51 <bpe l :source linkName="L2" / >
52 < / bpe l :sources>

100

C. Generated Artifacts

53 <bpel :copy>
54 <bpe l : f rom / >
55 < b p e l : t o / >
56 < / bpel :copy>
57 < / bpe l :ass ign>
58 <bpe l : i nvoke i n p u t V a r i a b l e ="PersonPersistenceServicePortTypesaveInput2"

opera t ion="save" ou tpu tVar iab le="
PersonPersistenceServicePortTypesaveOutput3" par tne rL ink ="
PersonPersistenceServicePortTypePLTPartnerLink" portType="
ns0:PersonPersistenceServicePortType">

59 < b p e l : t a r g e t s >
60 < b p e l : t a r g e t linkName="L2" / >
61 < / b p e l : t a r g e t s >
62 <bpe l :sources>
63 <bpe l :source linkName="L3" / >
64 < / bpe l :sources>
65 < / bpe l : i nvoke>
66 <bpe l :ass ign v a l i d a t e ="no">
67 < b p e l : t a r g e t s >
68 < b p e l : t a r g e t linkName="L3" / >
69 < / b p e l : t a r g e t s >
70 <bpe l :sources>
71 <bpe l :source linkName="L4" / >
72 < / bpe l :sources>
73 <bpel :copy>
74 <bpe l : f rom>
75 <bpe l :query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpath1.0" / >
76 < / bpe l : f rom>
77 < b p e l : t o >
78 <bpe l :query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpath1.0" / >
79 < / b p e l : t o >
80 < / bpel :copy>
81 < / bpe l :ass ign>
82 < b p e l : r e p l y opera t ion="persistPerson" par tne rL ink ="Process01PartnerLink"

portType="Process01PortType" v a r i a b l e ="persistPersonOutput4">
83 < b p e l : t a r g e t s >
84 < b p e l : t a r g e t linkName="L4" / >
85 < / b p e l : t a r g e t s >
86 < / b p e l : r e p l y >
87 < / b p e l : f l o w >
88 < / bpe l :p rocess>

Listing C.5: The BPEL generated for the process model used during development.

101

D. Compact Disc

The Compact Disc accompanying the hard copy of this thesis provides the following
elements.

• This thesis as a PDF file.

• The Eclipse project of the Composr application.

• The reference implementation that development was oriented at.

• The artifacts generated from the reference model presented in section 5.1.

102

Erklärung der Selbständigkeit

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig und ohne
fremde Hilfe verfasst und keine anderen als die in der Arbeit angegebenen Quellen
und Hilfsmittel verwendet habe. Die Arbeit hat in gleicher oder ähnlicher Form noch
keinem anderen Prüfungsamt vorgelegen.

Hannover, den 21. Dezember 2007

Leif Singer

103

	Introduction
	Motivation
	Problem Description
	Structure of this Thesis

	Basic Concepts
	Service-oriented Architecture
	Web Services
	Web Services Description Language
	XML Schema

	Service Compositions
	Business Process Execution Language

	Model-Driven Development
	Terminology
	UML Profiles
	Consequences

	Approach
	Intended Workflow
	Scenario
	Process Modeling
	Process Configuration
	Generation and Deployment

	Graphical User Interface
	Generator Requirements
	Commodity Services
	Summary

	The Composr UML Profile
	Metamodel
	Foundation
	Basic Activities
	Services
	Structured Activities
	Data

	Notation
	Initial Draft
	Survey
	Results of the Survey
	Final Version

	Development
	Development Process
	Generator Design
	Technology
	Artifact Dependencies
	Integration with the GUI
	Architecture of the Generator

	Generator Workflow and Artifacts
	XML Schema
	Web Services Description Language
	Commodity Services
	Business Process Execution Language

	Graphical User Interface
	Sketches
	Implementation

	A real-world Example
	The Thesis Process
	Student Implementation
	Composr Model

	Metrics
	Comparison

	Related Work
	Model-Driven Development of executable Processes
	Available Products

	Conclusions and Outlook
	Critical Appraisal
	Outlook
	Graphical Editor and Generator
	Commodity Services

	Conclusions

	Bibliography
	Survey
	Final Notation
	Generated Artifacts
	Compact Disc

